Powder diffraction intensities of α -Al₂O₃ calculated by traditional & DFT calculations

Takashi Ida Advanced Ceramics Research Center, Nagoya Institute of Technology, Japan ida.takashi@nitech.ac.ip

Introduction

ICDD PDF-4+ 2023 lists 23 star-quality data sets of corundum (*a*-Al₂O₃), where 21 sets (00-046-1212, 01-070-5679, 01-070-7364, 01-071-1683, 01-075-1862, 01-075-1863, 01-075-6775, 01-082-1399, 01-088-0286, 01-089-7715, 04-004-2852, 04-004-5434, 04-005-4213, 04-005-4505, 04-007-1400, 04-007-4873, 04-015-8098, 04-015-8993, 04-015-8994, 04-015-8995 & 04-015-8996) assign the **strongest** peak to 104-reflection,

and 2 sets (01-089-7716 & 01-089-7717) assign the strongest peak to 113-reflection.

NIST certifies 113-reflection is the strongest, 116-reflection is the 2^{nd} strongest, and 104-reflection is the 3^{nd} strongest, and 104-reflection is the strongest, 116-reflection is the 2^{nd} strongest, and 1.0.10/119-reflections are the 3^{nd} strongest for standard *a*-Al₂O₃ sintered disk SRM1976c.

Hubbard et al. (1976) have shown that it is expected that 116-reflection should be the strongest, 113reflection the 2^{nd} strongest, and 104-reflection the 3^{rd} strongest for a neutral atom model $Al_2^0 O_{3}^0$, while 113-reflection should be the strongest, 116-reflection the 2^{nd} strongest, and 104-reflection the 3^{rd} strongest for a fully-ionized model $Al_3^{3+}O_3^{2-}$.

Crystallographic Data of Corundum

Trigonal, $R\overline{3}c$ (No. 167), a = 4.759 Å, c = 12.993 Å (hexagonal setting) $c/a = 2.73 (a - Al_2O_3) \gg \sqrt{6} \approx 2.45$ (ideal hep arrangement of oxygen) $B_{\rm iso} \equiv 8\pi^2 U_{\rm iso} \approx 0.22$ Å² $\Leftrightarrow U_{\rm iso} = 0.0028$ Å²

TABLE I. Atomic positions and mean square displacements of α -Al₂O₃ from 5 data sets for 2 single crystals (Maslen et al., 1993)

		Crystal 1	Crystal 2		
	Data (1)	Data (2)	Data (3)	Data (4)	Data (5)
z (Al)	0.352 2	0.352 2	0.352 2	0.352 2	0.352 2
x (O)	0.694 2	0.693 8	0.693 8	0.694 0	0.694 0
U_{11} (Al) (Å ²)	0.002 4	0.002 1	0.002 5	0.002 5	0.002 5
U ₃₃ (Al) (Å ²)	0.002 7	0.002 5	0.002 4	0.002 4	0.002 4
$U_{11}(O)$ (Å ²)	0.002 8	0.002 5	0.002 8	0.002 8	0.002 8
U ₂₂ (O) (Å ²)	0.002 7	0.002 6	0.003 0	0.003 0	0.003 0
U ₃₃ (O) (Å ²)	0.002 7	0.002 8	0.002 8	0.002 8	0.002 8
$U_{12}(O)$ (Å ²)	0.000 3	0.000 3	0.000 3	0.000 3	0.000 3

Figure 1. Projection of α -Al₂O₃ structure along [110]-direction in hexagonal setting, drawn with *VESTA 3* (Momma & Izumi, 2011)

Density Functional Theory (DFT) Calculation

Quantum ESPRESSO 7.1 (Gianozzi et al., 2009, 2017) (open-source, free)

Pseudo-potential: projector-augmented wave (PAW) (Kresse & Joubert, 1999) Exchange-correlation: local density approximation (LDA) (Perdew & Zunger, 1981) & Perdew-Burke-Ernzerhof (PBE) model (Perdew et al., 1996, 1997)

Electron density: $60 \times 60 \times 60$ -mesh for rhombohedral (reduced) cell (a = 5.129 Å, $\alpha = 55.29^{\circ}$)

↓ (Fourier transform + Dispersion correction) × (Common atomic displacement)

↓ (Square absolute, Geometrical correction, Sum of equivalent reflections)

XRD peak intensities, Ihkl

 $h \underset{(conventional)}{\overset{h}{\overset{h}}} a \overset{h}{\overset{h}} a \overset{h}{} a \overset{h}{\overset{h}} a \overset{h}{\overset{h}} a \overset{h}{\overset{h}} a \overset{h}{\overset{h}} a \overset{h}{\overset{h}} a \overset{h}{\overset{h}} a$

Figure 2. Projection of electron density iso-surface (yellowish color) at the level of 0.3 e/Å³ along [11 $\overline{2}$]-direction in rhombohedral setting, and color-scaled density map (red: high, blue: low) on the faces of the rhombohedral cell, rendered from 60 × 60 × 60 voxel data with *VESTA* 3 (Momma & Izumi, 2011)

Experimental & Treatment of XRD Data

Powder #1 (High Purity Chemicals, 99.99%, 2–3 μ m) Powder #2 (High Purity Chemicals, 99.99+%, ca 0.3 μ m) Instrument: Rigaku MiniFlex (Cu *Ka*) with silicon-strip X-ray detector Deconvolutional Treatment (DCT) (Ida, 2021a) Individual peak profile fitting with a symmetric profile function (Ida, 2021b)

Figure 3. Observed (upper, red) and deconvolutionally treated (DCT) (lower; blue) X-ray diffraction intensity of α -Al₂O₃. Vertical lines indicate the peak locations listed in PDF 00-046-1212.

Figure 4. Demonstration of DCT and automatic individual peak profile fitting with a symmetric function for 113-reflection of α -Al₂O₃; *w*: HWHM of Lorentzian component, $\sigma \& k$: standard deviation & excess kurtosis of symmetrized instrumental function.

 TABLE II. XRD relative intensities listed in ICDD PDF-4+, intensities certified for NIST SRM676a &

 SRM1976c, intensities for $Al_2^0 O_3^0$, $Al_2^{1.5+}O_3^-$ & $Al_2^{3+}O_3^{-2}$ calculated by a conventional method, intensities calculated by DFT (PAW-LDA & PAW-PBE) methods, and intensities extracted from experimental data. Values in parentheses are differences from NIST SRM676a data.
 Strongest
 2^{ad} Strongest

hkl	ICDD PDF-4+		NIST		Conventional		DFT		Experimental		
	00-046- 1212	01-089- 7716	SRM 676a	SRM 1976c	$Al_2^0O_3^0$	Al ₂ ^{1.5+} O ₃ ⁻	$Al_{2}^{3+}O_{3}^{2-}$	PAW LDA	PAW PBE	99.99% 2–3 μm	99.99+% ca 0.3 μm
012	45 (-12)	65.7 (+8.6)	57.1	24 (-33)	61.0 (+3.9)	59.3 (+2.2)	57.1 (+0.0)	54.1 (-3.0)	57.3 (+0.2)	56.8 (-0.3)	56.7 (-0.4)
104	100 (+12)	99.5 (+11.1)	88.4	100 (+12)	97.5 (+9.1)	94.5 (+6.1)	90.8 (+2.4)	79.8 (–8.6)	84.3 (-4.1)	87.3 (-1.1)	90.0 (+1.6)
110	21 (-17)	46.4 (+8.6)	37.8		45.6 (+7.8)	43.3 (+5.5)	40.8 (+3.0)	32.5 (-5.3)	34.0 (-3.8)	37.2 (-0.6)	36.0 (-1.8)
113	66 (-34)	100	100	37 (-63)	98.0 (-2.0)	99.4 (-0.6)	100	100	100	100	100
024	34 (-13)	48.0 (+0.7)	47.3	21 (-26)	50.5 (+3.2)	50.8 (+3.5)	50.7 (+3.4)	43.0 (-4.3)	42.7 (-4.6)	46.3 (-1.0)	45.7 (-1.6)
116	89 (-7)	94.2 (-1.6)	95.8	88 (-8)	100 (+4.2)	100 (+4.2)	99.3 (+3.5)	86.7 (-9.1)	88.2 (-7.6)	92.6 (-3.2)	95.2 (-0.6)
214	23 (-15)	35.1 (-2.6)	37.7		40.5 (+2.8)	40.6 (+2.9)	40.5 (+2.8)	33.3 (-4.4)	33.1 (-4.6)	36.1 (-1.6)	34.9 (-2.8)
300	27 (-31)	54.1 (-3.4)	57.5	12 (-46)	61.9 (+4.4)	61.5 (+4.0)	60.6 (+3.1)	53.0 (-4.5)	52.7 (-4.8)	56.4 (-1.1)	52.3 (-5.2)
δ _{PMS}	20%	6.0%		37%	5.2%	3.9%	2.6%	5.6%	4.4%	1.4%	2.3%

 $\delta_{\rm RMS}$: Root mean square difference from NIST SRM676a intensities