名古屋工業大学 先進セラミック研究センター

材料設計研究グループ 成果報告 2022

名古屋工業大学 先進セラミックス研究センター

教授 井田 隆

あいちシンクロトロン光センター 主幹研究員

Regional Co-chair of Eastern Pacific Rim & Director at Large, International Centre for Diffraction Data

材料設計研究グループ:粉末X線回折の方法論

2020 年度

X線回折 (XRD) データ処理ソフトウェア exterm 3 (Python コード) の公開

2021 年度

実験室での結晶性有機化合物の迅速評価

XRD データ処理ソフトウェアの更新 (exterm 4)

2022 年度

コランダム(サファイア, α-Al₂O₃)

擬ポテンシャル密度汎関数理論(PP-DFT)計算による XRD シ ミュレーション

XRD データ処理ソフトウェア exterm 4 (未公開) のテスト

背景:小学校から高校までの情報教育

2017 年 文部科学省からの新学習指導要領告示

学力:学習意欲,知識・技能の習得,思考力・判断力・表現力等

2020 年度 小学校でのプログラミング教育必修化

国語・音楽・社会・算数・理科などで扱われる

2021 年度 中学校でのプログラミング教育必修化

技術・家庭科で扱われる

2022 年度 高校「情報」科目新設, 必修化

情報化社会の問題解決,情報のデジタル化,コンピュータと プログラミング,情報通信システム・データベース利用

2025 年度 大学入学共通テストで「情報」科目の出題

X線回折 (XRD) 技術と情報教育

データベース・情報通信技術利用 X線回折データ ➡ X線回折 (XRD) データベースの参照

コンピュータのしくみ・プログラミング

XRD データ収集は、コンピュータを使ってロボットにさせる。
 XRD 装置制御・XRD データ処理プログラムに Python の使われる
 る例が多くなった。(以前は C/C+/C++/C#, JavaScript など)
 (高校「情報 I・II」のプログラミング実習では Python が使われる)

コンピュータ・シミュレーション

XRD ユーザの固体電子状態量子化学計算志向 実用的な自動 XRD 測定・制御装置の設計 密度汎関数理論 (DFT) 計算(第一原理計算?)

XRD 分野でのデータベース利用

ICDD PDF® データベース

- 粉末回折と結晶構造のデータベース (JCPDS データベース)
- 2023 年度版 PDF® データベースの収録件数 1,143,236 件
 [↔ COD データベース(無料) 登録件数 1,568,546 件 (2023)]
- 品質記号: ★ (star), G (good), I (indexed), B (blank), D (deleted),...
- ISO 9001:2015(QMS; 品質管理システム)認証取得済
- 参照強度比 (reference intensity ratio) 値が付くので、リートベル
 ト法を使わなくても、非晶質でも、XRD で定量分析ができる。

参照強度比 (RIR; I/Ic):

 調査対象物質の最強回折ピーク強度とコランダム (corundum) (α-Al₂O₃)の最強回折ピーク強度の比

コランダムの粉末回折データ

- ICDD PDF-4+ 2023 中のコランダムの★品質データ 23 件のうち 21 件 (00-046-1212, 01-070-5679, 01-070-7364, 01-071-1683, 01-075-1862, 01-075-1863, 01-075-6775, 01-082-1399, 01-088-0286, 01-089-7715, 04-004-2852, 04-004-5434, 04-005-4213, 04-005-4505, 04-007-1400, 04-007-4873, 04-015-8608, 04-015-8993, 04-015-8994, 04-015-8995, and 04-015-8996)は 104-反射を最強ピークとし, 04 (at accesses) (たまま)
 - 2件 (01-089-7716 and 01-089-7717) は 113-反射を最強ピークとする。
- NIST コランダム標準粉末 SRM676a 保証書記載値では、
 113-反射:最強、116-反射:第2最強、104-反射:第3最強
 ピークとされる。
- 古典X線結晶学手法で計算すると、中性原子モデル Al⁰₂O⁰₃では
 116-反射が最強、完全イオン化モデル Al³⁺O²⁻ では 113-反射が最 強と予想される。(Hubbard *et al.*, 1976)

コランダム (a-Al₂O₃) の古典手法X線回折強度計算

hkl	hkl	m hkl	2θ (°)	N	[ST	Ca		lculated Intensity		
(H)	(R)			SRM 676a	SRM 1976c	$Al_{2}O_{3}$ -DC	Al ⁰ ₂ O ⁰ ₃ +DC	Al ³⁺ ₂ O ²⁻ ₃ –DC	Al ³⁺ ₂ O ^{2–} ₃ +DC	
012	110	6	25.574	57.1	23.6	61.3	61.0	56.2	57.1	
104	211	6	35.148	88.4	100	96.6	97.5	88.0	90.8	
110		6	37.774	37.8		44.2	45.6	38.6	40.8	
113	210	12	43.351	100	37.2	100	98.0	100	100	
024	220	6	52.548	47.3	30.7	50.1	50.5	49.3	50.7	
116	321	12	57.496	95.8	87.8	99.5	100	96.7	99.3	
214	310	12	66.513	37.7		39.8	40.5	39.0	40.5	
300		6	68.204	57.5	12.4	61.5	61.9	58.9	60.6	
NIST a-Al ₂ O ₃										
標準	基粉末		NIST α-Al ₂ O ₃ [†]		中性	上原子モデル		完全イオン化モデル		
保証値			標準焼結体			分散補正		分散補正		

日本市工

なし あり

なし|あり

保証値

コランダム (a-Al₂O₃) の粉末回折データ

Figure 1 α-Al₂O₃ 粉末(高純度化学研究所, 99.99%, 2–3 μm)のX線回折データ。 実測値を赤線,逆畳込的処理後のデータを青線で示す。

確かに 104 と 113, 116-反射が「強めの回折ピーク」らしい。

密度汎関数理論計算

量子力学的な電子状態計算(量子化学計算)法のうちの一つ。 **特徴:**

電子の**波動関数**(複素数)の代わりに電子の**密度**(実数)を使う。 **用途:**

固体の電子状態(バンド分散・状態密度・電気伝導性等)・力学的 な性質(弾性率・フォノン分散等)・振動分光特性(赤外分光・ラ マン分光)の予測

実用性:

パソコンでも使える実用的なソフトウェアが入手可能な状態

全電子法: *Wien2k* (€500)

擬ポテンシャル法: VASP (有料), Quantum Espresso (無料)

古典X線結晶学と DFT 計算

古典X線結晶学(結晶構造解析)の考え方

- 孤立原子・イオンの計算電子密度のフーリエ変換(実数)に分 前補正項(複素数)を加え原子変位因子(実数)と原子位置で 決まる位相因子(複素数)をかけて足し合わせた「結晶構造因 子」(複素数)の絶対値の自乗で XRD 強度を予測できる。
- 化学結合による電子密度変化で XRD 強度は変わる。

DFT 電子密度からX線回折強度を予想すること

- 化学結合による電子密度変化は織り込み済み。
- X線の分散補正項を付け加えることは容易
- 原子・イオンごとに異なる**原子変位因子**に対応するのは困難
- ・ 共通の原子変位を仮定できれば原子変位因子の導入も容易

コランダム (a-Al₂O₃)の結晶構造 (1)

三方晶 菱 面体格子 $R\overline{3}c$ (#167) 六方設定 $a_{\rm H} = 4.759$ Å, $c_{\rm H} = 12.993$ Å 菱面体設定 $a_{\rm R} = 5.129$ Å, $\alpha_{\rm R} = 55.3^\circ$

AIO6 配位八面体が頂点共有・ ^{りょう} 稜(辺)共有・面共有で連結した構造?

六方最密充填 (hcp) 配列をした O 原子の 隙間の 6 配位八面体位置の 2/3 を AI 原子が占める構造。

AIO6 配位八面体は

「歪んだ形」に

見える

コランダム (a-Al₂O₃) の原子位置と原子変位

TABLE I. Fractional coordinates and anisotropic displacement parameters for α -Al₂O₃, reported by Maslen et al. (1993).

		Crystal 1	Crystal 2			
	Data set 1	Data set 2	Data set 3	Data set 4	Data set 5	
z (Al)	0.3522	0.3522	0.3522	0.3523	0.3523	
x (O)	0.6942	0.6938	0.6938	0.6940	0.6940	
U_{11} (Al) (Å ²)	0.0024	0.0021	0.0025	0.0022	0.0023	
U_{33} (Al) (Å ²)	0.0027	0.0025	0.0024	0.0022	0.0023	
$U_{11}(O)(Å^2)$	0.0028	0.0025	0.0028	0.0026	0.0025	
$U_{22}(O)(Å^2)$	0.0027	0.0026	0.0030	0.0030	0.0028	
$U_{33}(O)(Å^2)$	0.0027	0.0028	0.0028	0.0021	0.0027	
U_{13} (O) (Å ²)	0.0003	0.0003	0.0003	0.0003	0.0003	

AI と O とに異なる非等方性原子変位を仮定した解析 (Maslen et al., 1993) の結果

- AIにもOにも共通の等方性原子変位を仮定しても良さそう。
- ▶ DFT 計算電子密度と XRD データとを比較できる。

コランダム (a-Al₂O₃) の電子密度

Figure 3 VESTA3 (Momma & Izumi, 2011) によるコランダムの電子密度投影図

コランダム (a-Al₂O₃) の実測 XRD 回折ピーク強度

Figure 4 コランダム 104-回折ピークの装置出力(黒波線)と逆畳込的処理後のデー タ(赤十字マーク), 独自ピーク形状モデル当て嵌め曲線(青線), 誤差範囲(淡 緑), 差曲線(黒点線)

コランダム (a-Al₂O₃) の実測 XRD 強度と計算 XRD 強度

		NIST Observed		Al ³⁺ 2	2 O ^{2–} 3	PP-DFT		
	(H)	SRM 676a	Specimen #1	Specimen #2	Method (1)	Method (2)	PAW LDA	PAW PBE
	102	57.1	56.8 (-0.3)	56.7 (-0.4)	57.1 (+0.0)	58.1 (+1.0)	54.1 (-3.0)	57.3 (+0.2)
	104	88.4	87.3 (-1.1)	90.0 (+1.6)	90.8 (+2.4)	90.9 (+2.5)	79.8 (-8.6)	84.3 (-4.1)
	110	37.8	37.2 (-0.6)	36.0 (-1.8)	40.8 (+3.0)	40.9 (+3.1)	32.5 (-5.3)	34.0 (-3.4)
	113	100	100	100	100	100	100	100
	204	47.3	46.3 (-1.0)	45.7 (-1.6)	50.7 (+3.4)	50.5 (+3.2)	43.0 (-4.3)	42.7 (-4.6)
	116	95.8	92.6 (-3.2)	95.2 (-0.6)	99.3 (+3.5)	99.3 (+3.5)	86.7 (-8.9)	88.2 (-7.6)
	214	37.7	36.1 (-1.6)	34.9 (-2.8)	40.5 (+2.8)	40.1 (+2.4)	33.3 (-4.4)	33.1 (-4.6)
	300	57.5	56.4 (-1.1)	52.3 (-5.2)	60.6 (+3.1)	59.9 (+2.4)	53.0 (-4.5)	52.7 (-4.8)
RMS 残差		-	1.4%	2.3%	2.6%	2.5%	5.6%	4.4%

材料設計研究グループ 2022 年度活動報告, まとめ

コランダムの ICDD PDF-4+ データ, NIST SRM 保証値の精査

➡ NIST SRM676a 回折強度保証値は信頼しうる。

コランダム (a-Al₂O₃) XRD ピーク強度についての古典的な計算 法による予想と密度汎関数理論 (DFT) 計算による予想の比較

➡ 局所密度近似 (LDA) 予想より一般化勾配近似 (GGA) 予想は 実測値に近いが,古典完全イオン化モデル予想の方が実測値に 近い。

通常光源 XRD データへの逆畳込的な処理 (Ida & Toraya, 2002) と装置幾何学に基づく「物理的な根拠のある」回折ピーク形状 モデル・システム (Ida, 2021) の応用可能性

➡ 電子密度解析などの目的にも使える場合がある。