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It is the first time I attend the Denver conference, I am really enjoying this 
meeting, and I am happy to make a talk here.
Thanks to the organizers and all the staffs on this meeting.
Now, I will be talking about a new method for analysis of observed powder 
diffraction data based on maximum likelihood estimation.
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In this presentation, I will talk about the motivation of this study,
theoretical aspects, method of calculation, and the results of structure 
refinement about 4 examples, and like to show the conclusions of the study.



Errors in Optimized Parameters (Lattice Const., Atomic 

Positions, etc) can be evaluated by Rietveld Analysis, if the 

Experimental Errors are Known.

Motivation
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First, let me mention, why I started this study, because the conclusions, I will 
show you later, may appear somehow TRICKY to some Rietveld users,
but the motivation of this study seems to be commonly acceptable !
In principle, errors in crystallographic parameters, such as lattice constants, 
atomic positions, and so on, can be evaluated by the Rietveld analysis, if the 
experimental errors are known quantities.



Errors in Optimized Parameters (Lattice Const., Atomic 

Positions, etc) can be evaluated by Rietveld Analysis, if the 

Experimental Errors are Known.

Too Small Errors in Optimized Parameters in the Output of 

Rietveld Analysis,  particularly in the cases :

Strong X-ray Source (Rotating Anode, Synchrotron)

Long Measurement Time

High-Resolution Optics (Crystal Analyzer or Monochromator)

High-Seinsitivity Detectors (1-D, 2-D)

Samples with Good Crystallinity and/or Heavy Elements

Motivation
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But we often get TOO small errors in the output of Rietveld analysis, 
particularly in the cases: Strong x-ray source, Long-Time Measurement, 
High-Resolution Optics, High-Sensitivity Detectors, and well-crystallized 
samples, or samples including heavy elements.  
Most of them sound NICE, but we should be careful in those cases.



Errors in Optimized Parameters (Lattice Const., Atomic 

Positions, etc) can be evaluated by Rietveld Analysis, if the 
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The discrepancy is simply ascribed to the Under-Estimation of the 
Experimental Errors in those cases.



Errors in Optimized Parameters (Lattice Const., Atomic 

Positions, etc) can be evaluated by Rietveld Analysis, if the 

Experimental Errors are Known.

Too Small Errors in Optimized Parameters in the Output of 

Rietveld Analysis,  particularly in the cases :

Strong X-ray Source (Rotating Anode, Synchrotron)

Long Measurement Time

High-Resolution Optics (Crystal Analyzer or Monochromator)

High-Seinsitivity Detectors (1-D, 2-D)

Samples with Good Crystallinity and/or Heavy Elements

Experimental Errors are Under-Estiimated !

→ Use Appropriate Values for Experimental Errors !

Motivation
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And the Solution should also be Simple: Just Use Appropriate Values for the 
Assumptions of Experimental Errors.



Background/Theory (1/2)
A theoretical model for statistical errors

　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case

　　　= square root of count

　(2) 　  : Error caused by particle (sampling) statistics (Alexander et al. 1948)

　　　　　　　　　 : peak intensity,          : effective multiplicity

Dependence on (ycalc - b), 2θ and meff (for symmetric relection, stationary specimen) 
is acceptable.

σ j
2 ≈ σ c( ) j

2 + σ p( ) j
2

σ c

σ p
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σ p
2 ≈Cp ycalc − b( )2 sinθ /meff

ycalc − b( ) meff

And it is already known, since more than FIFTY years ago, that the 
experimental errors in powder x-ray diffraction data are partly caused by 
counting statistics, but sometimes more dominantly affected by particle 
statistics. And I have experimentally confirmed that we can certainly apply the 
proposed dependence of the pariticle statistics, shown HERE, on the peak 
intensity, diffraction angle and the multiplicity of reflection.  



Background/Theory (1/2)
A theoretical model for statistical errors

　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case

　　　= square root of count

　(2) 　  : Error caused by particle (sampling) statistics (Alexander et al. 1948)

　　　　　　　　　 : peak intensity,          : effective multiplicity

Dependence on (ycalc - b), 2θ and meff (for symmetric relection, stationary specimen)
is acceptable.
Proportionality factor Cp , determined by crystallite size, absorption factors of the 
sample and geometry of the diffractometer, 
can experimentally be evaluated for stationary specimens, 
in symmetric-reflection mode, if a standard powder and a sample-spinning 
attachment are used (Ida et al., 2009).
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σ p
2 = Cp ycalc − b( )2 sinθ /meff

ycalc − b( ) meff

And the proportionality factor is determined by the crystallite size, absorption 
factors and geometry of the diffractometer.
It can experimentally be evaluated for stationary specimens in symmetric-
reflection mode measurements, 
if a standard powder and a sample spinning attachment are used.



Background/Theory (1/2)
A theoretical model for statistical errors

　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case

　　　= square root of count

　(2) 　  : Error caused by particle (sampling) statistics (Alexander et al. 1948)

　　　　　　　　　 : peak intensity,          : effective multiplicity

Dependence on (ycalc - b), 2θ and meff (for symmetric relection, stationary specimen)
is acceptable.
Proportionality factor Cp , determined by crystallite size, absorption factors of the 
sample and geometry of the diffractometer, 
can experimentally be evaluated for stationary specimens, 
in symmetric-reflection mode, if a standard powder and a sample-spinning 
attachment are used (Ida et al., 2009).　← useless for structure refinement
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σ p
2 = Cp ycalc − b( )2 sinθ /meff

ycalc − b( ) meff

But, it is useless for the purpose of structure refinement.
Because continuous rotation of the sample always improves the powder 
diffraction data for structure refinement.
I mean that there is no reason to keep the sample stationary, if we can spin 
the sample.  AND, unfortunately, we have no reliable model for particle 
statistics about rotating samples at this moment.



Background/Theory (1/2)
A theoretical model for statistical errors

　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case

　　　= square root of count

　(2) 　  : Error caused by particle (sampling) statistics (Alexander et al. 1948)

　　　　　　　　　 : peak intensity,          : effective multiplicity

Proportionality factor Cp is unknown

σ j
2 ≈ σ c( ) j

2 + σ p( ) j
2

σ c

σ p
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σ p
2 = Cp ycalc − b( )2 sinθ /meff

ycalc − b( ) meff

So we should think that the proportionality factor in the model of particle 
statistics is still unknown.



Background/Theory (1/2)
A theoretical model for statistical errors

　(1) 　  : Error caused by counting (Poisson) statistics for count-loss negligible case

　　　= square root of count

　(2) 　  : Error caused by particle (sampling) statistics (Alexander et al. 1948)

　　　　　　　　　 : peak intensity,          : effective multiplicity

Proportionality factor Cp is unknown

　(3) 　  : Error proportional to intensity (Toraya 1998, 2000)

　　　Incompleteness of count-loss correction (?) and/or peak profile model (?)

Proportionality factor Cr is unknown

How can we optimize the statistical model including two unknowns Cp & Cr in variance 
to fit experimental data ?

σ j
2 = σ c( ) j

2 + σ p( ) j
2
+ σ r( ) j

2

σ c

σ p

σ r
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σ p
2 = Cp ycalc − b( )2 sinθ /meff

σ r
2 = Crycalc

2

ycalc − b( ) meff

And it is quite likely that the statistical errors include another term 
proportional to the intensity, NOT the square root of the intensity.
So I have assumed a three-term model including two unknown parameters, 
for statistical errors.
Now, the question is, how can we optimize the statistical model including two 
unknown parameters in variance from experimental data.  
AND I have got an idea, Last Year, to Use Maximum Likelihood Estimation 
Instead of Least Squares Method.



Maximum likelihood estimation (MLE)
     Maximization of the probability that the observed data should appear

     Maximization of 
　　　　　　　　　　　

　　Deviation of the observed value from calculated value : 

　　MLE can optimize not only　　　 , but also the error　　ycalc( ) j σ j

Δ j = Yobs( ) j − ycalc( ) j

Background/Theory (2/2)

12

j=1

N

Π 1
2πσ j

exp −
Δ j
2

2σ j
2

⎛

⎝⎜
⎞

⎠⎟

Maximum likelihood estimation means that maximization of the probability 
that the observed experimental data should appear.
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It is exactly equivalent to minimization of the sum of weighted squared 
deviations and logarithm of variance, if the normal distribution is assumed.



Maximum likelihood estimation (MLE)
     Maximization of the probability that the observed data should appear

     = Minimization of                               
　　　　　　　　　　　

　　Deviation of the observed value from calculated value : 

　　MLE can optimize not only　　　 , but also the error　　

Least-squares method (LSQ)

= Minimization of 　　　　　　(　 : known error )

ycalc( ) j

j=1

N

∑ Δ j
2

σ j
2 + lnσ j

2⎛

⎝⎜
⎞

⎠⎟

σ j

Δ j = Yobs( ) j − ycalc( ) j

Background/Theory (2/2)

14

j=1

N

∑ Δ j
2

σ j
2 σ j

σ

10

0

4321

 
 

 
 

 

1/σ 2

lnσ 2

1/σ 2 + lnσ 2

Unlikelihood

Weighted Sum of
Squared Deviations

We can call it “Unlikelihood estimator” or “Unlikelihood function”.  You can see 
that it looks very similar to the least-squares method, but it is definitely 
different from the least-squares method, because the maximum likelihood 
method can optimize the model for the errors, “SIGMA”.
The plot shown HERE, demonstrates this TRICK. Unlikelihood function 
always has minimum at a finite value of sigma, by adding the logarithm of 
variance to the weighted squared deviation.
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Maximum likelihood estimation (MLE)
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Just Minimize 
Unlikelihood !

So I have decided to Throw Away the Concept: “Minimize the Weighted Sum 
of Squares Deviations”, but Apply a New Simple Concept: “Just Minimize the 
Unlikelihood” !
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Method of Calculation

Step (1) : Structure refinement by the Rietveld method
Optimization of structure and profile models
(with RIETAN-FP ver. 2.x)

Step (2) : Error estimation by MLE method
Evaluation of effective multiplicity at each data point
Optimization of error model by downhill simplex method
Calculation of statistical errors
(coded with a graphing software Igor Pro ver. 6.2 macro language)

Iterations of steps (1) & (2)
Maximum-likelihood solution of structure, profile and error models will be obtained, when 
no change is observed on further iteration (typically 2~3 iterations are needed).

Δ, {y1, ..., yM} σ

Of course, the Rietveld codes are still useful.  We can divide the maximum 
likelihood procedure into two steps.
First, apply the Rietveld refinement, Next, estimate errors by the MLE from 
the results of the Rietveld refinement, and use the optimized errors in the 
next Rietveld step, and so on.  
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Method of Calculation

Step (1) : Structure refinement by the Rietveld method
Optimization of structure and profile models
(with RIETAN-FP ver. 2.x)

Step (2) : Error estimation by MLE method
Evaluation of effective multiplicity at each data point
Optimization of error model by downhill simplex method
Calculation of statistical errors
(coded with a graphing software Igor Pro ver. 6.2 macro language)

Iterations of steps (1) & (2)
Maximum-likelihood solution of structure, profile and error models will be obtained, when 
no change is observed on further iteration (typically 2~3 iterations are needed).

Δ, {y1, ..., yM} σ

Give me Δ & {y1, ..., 
yM}, as OUTPUT, and Allow 

σ as INPUT

OK !

So I asked a Rietveld programmer, Dr. Izumi, to Modify His Program to give 
me the delta (deviation) & individual peak profile as OUTPUT, and to allow 
user-defined errors as INPUT. 
and he said “O.K., it’s easy !”
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Method of Calculation

Step (1) : Structure refinement by the Rietveld method
Optimization of structure and profile models
(with RIETAN-FP ver. 2.x)

Step (2) : Error estimation by MLE method
Evaluation of effective multiplicity at each data point
Optimization of error model by downhill simplex method
Calculation of statistical errors
(coded with a graphing software Igor Pro ver. 6.2 macro language)

Iterations of steps (1) & (2)
Maximum-likelihood solution of structure, profile and error models will be obtained, when 
no change is observed on further iteration (typically 2~3 iterations are needed).

2Θ, Δ, {y1, ..., yM} σGood job !

Here 
you are !

A few days later he gave me a modified version of his Rietveld program.
Then, All I should do was minimization of the Unlikelihood function in Two 
dimension.
It was not difficult for me, and I have also finished the coding in a few days.
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Method of Calculation

Step (1) : Structure refinement by the Rietveld method
Optimization of structure and profile models
(with RIETAN-FP ver. 2.x)

Step (2) : Error estimation by MLE method
Evaluation of effective multiplicity at each data point
Optimization of error model by downhill simplex method
Calculation of statistical errors
(coded with a graphing software Igor Pro ver. 6.2 macro language)

Iterations of steps (1) & (2)
Maximum-likelihood solution of structure, profile and error models will be obtained, when 
no change is observed on further iteration (typically 2~3 iterations are needed).

Δ, {y1, ..., yM} σ

F. Izumi

T. Ida

Ida-Izumi cycle (!)

You can call it as IdaIzu-mi cycle, if you like.
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Results (1/4)  Ca5(PO4)3F  (powder data attached to RIETAN-FP)

Comparison with single-crystal data
Mineral & synthetic (Sudarsanan et al. 1972)

Difference in atomic coordinates
(from synthetic single crystal)

The results of the new (MLE) method are closer to single-crystal data rather 
than the results of the Rietveld method from the same data set !
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 P63/m

On this slide, I am showing the comparison about the atomic coordinates in 
the results of the Rietveld as red, maximum likelihood method as blue, it 
means differences in atomic coordinates from single crystal data about fluoro-
apatite.
You can see that the atomic coordinates optimized by the new method are 
closer to single-crystal data rather than the results of the Rietveld method.  
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The results of the new (MLE) method are closer to single-crystal data rather 
than the results of the Rietveld method from the same data set !
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 P63/m

?!

The result was quite different from what I expected.
What I expected was the length of the error-bars should become longer by 
increasing the statistical errors, and I did NOT really expect the improvement 
of the accuracy.



Results (2/4)　PbSO4   (powder data attached to FULLPROF, used for RRRR)

Comparison with single-crystal data
Lamellar 0.17×0.17×0.03 mm3 (Miyake et al. 1978)，0.1×0.08×0.06 mm3 (Lee et al. 2005)

Difference in atomic coordinates
(from results by Miyake et al.)

The difference between the results of the Rietveld method and the results 
of the new (MLE) method is not significant, in this case.
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Pnma

The second example is lead sulfate (anglesite), and it shows no significant 
difference between Rietveld and new methods, and it suggests that the data 
are collected almost in idealistic condition for Rietveld analysis.
Actually this powder diffraction data set is from Rietveld Refinement Round 
Robin.  
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Lamellar 0.17×0.17×0.03 mm3 (Miyake et al. 1978)，0.1×0.08×0.06 mm3 (Lee et al. 2005)

Difference in atomic coordinates
(from results by Miyake et al.)

The difference between the results of the Rietveld method and the results 
of the new (MLE) method is not significant, in this case.
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Pnma

Disappointed ?

Not at all !

One may think that I was disappointed by this result, but absolutely NO, 
because we do not want the results of the Rietveld refinement to be changed, 
when we have already got good results by the Rietveld method.
So it suggests another FAVORABLE behavior of this new method, 
that is, You can sometimes confirm the reliability of the Rietveld results, by 
applying the maximum likelihood estimation.



Results (3/4)　BaSO4     (powder data attached to RIETAN-FP)

Comparison with single-crystal data
Spherical 0.15 mmΦ (Miyake et al. 1978)，0.33×0.25×0.15 mm3 (Lee et al. 2005)

Difference in atomic coordinates
(from results by Miyake et al.)

The results of the new (MLE) method coincide with the single-crystal 
data except one structure parameter (O1: z), while the deviations in the results of 
the Rietveld method exceed the error range.
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Pnma

The third example is barium sulfate (barite), it is isostructural to lead sulfate 
(anglesite).
This result shows MOST SIGNIFICANT improvement obtained by the 
maximum likelihood estimation.
You can see that the differences from single crystal data has become almost 
ZERO, when we apply the MLE.
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Comparison with single-crystal data
Spherical 0.15 mmΦ (Miyake et al. 1978)，0.33×0.25×0.15 mm3 (Lee et al. 2005)

Difference in atomic coordinates
(from results by Miyake et al.)

The results of the new (MLE) method coincide with the single-crystal 
data except one structure parameter (O1: z), while the deviations in the results of 
the Rietveld method exceed the error range.
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Pnma

(Maximum Likelihood Estimation: < 1920)
+ (Particle Statistics: 1948)

= (NEW method) ?

You may call it a NEW 
method !!

But this method is JUST a combination of classical methods.
Maximum likelihood estimation was proposed almost a hundred years ago,
and the Theory about Particle Statistics was proposed more than FIFTY 
years ago.
Can I call it a NEW method ? - I Tweeted, 
And Dr. Izumi Tweeted, You May Call it a new method, in reply.



Results (4/4)　LaxSr1-xMnO3

La0.03Sr0.97MnO3， P63/mmc
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Mn1

Mn2

Give me the Rietveld results

How about a NEW 
method ?

 ......

After that, a person working in an industrial company, asked me to analyze 
his data by the Rietveld method.  And I told him, “I think I have found an 
alternative method...” , 



Results (4/4)　LaxSr1-xMnO3

La0.03Sr0.97MnO3， P63/mmc

27

Mn1

Mn2

Give me the Rietveld results, anyway.

OK ....

and he said “I do not understand your new method, anyway we like to have 
the Rietveld results”. 



Results (4/4)　LaxSr1-xMnO3

La0.03Sr0.97MnO3， P63/mmc
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SPring-8 BL19B2
La0.03Sr0.97MnO3

Rietveld
BVS(Mn1) = +2.97
BVS(Mn2) = +4.39

Mn1

Mn2

So I have analyzed his data of Lanthanum Strontium Manganite by the 
Rietveld method, and calculated the bond valence sums of two different sites 
of Manganese.
The valence of Mn1-site was about THREE, and the valence of Mn2-site was 
about 4.5 ... It may be possible, because the two sites are not equivalent.
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La0.03Sr0.97MnO3， P63/mmc
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PDF#04-010-5038
(Star Quality)
La0.1Sr0.9MnO3

Rietveld
BVS(Mn1) = +4.65
BVS(Mn2) = +3.04

SPring-8 BL19B2
La0.03Sr0.97MnO3

Rietveld
BVS(Mn1) = +2.97
BVS(Mn2) = +4.39

Mn1

Mn2

Then I have searched the ICDD-PDF4+ database, and found STAR Quality 
Data from neutron diffraction, and calculated bond valence sums from the 
atomic coordinates.
In this case, Mn1-site has the valence about 4.5 and Mn2-site has the 
valence about THREE.
OK, It may also be possible, because the samples are different.



Results (4/4)　LaxSr1-xMnO3

La0.03Sr0.97MnO3， P63/mmc
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SPring-8 BL19B2
La0.03Sr0.97MnO3

Rietveld
BVS(Mn1) = +2.97
BVS(Mn2) = +4.39

SPring-8 BL19B2
La0.03Sr0.97MnO3

Ida-Izumi
BVS(Mn1) = +3.82
BVS(Mn2) = +3.90

Mn1

Mn2

Finally, I have tried to apply the new method.
Then, the valence of Mn1-site was estimated at about 4,
and the valence of Mn2-site was also estimated about 4.
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I adopt the results of your 
NEW method.

....

I have shown all the results to the person who wanted me to give him the 
Rietveld results.
and he said, “I will adopt the results of your new method”.
I don’t know the exact reason...



Conclusions

Application of the Rietveld (LSQ) method to powder X-ray diffraction data is hardly justified 
in some (many ?) cases.  

A new analytical method for powder diffraction intensity data based on MLE, superordinate 
concept of the LSQ method, has been developed.  The method incorporates estimation of 
statistical errors with structure refinement.  

The structure parameters of Ca3(PO4)3F & BaSO4 optimized by the new method have 
become closer to the single-crystal data, as compared with the results of the Rietveld 
refinement.  The structure parameters of PbSO4 was almost unchanged.

The structure of a La-Sr-Mn-O system optimized by the new method is significantly different 
from those refined by the Rietveld analyses.  Discussions about crystal & electronic 
structures (chemical bond, crystal field, orbital mixing, electronic correlation, electron-
phonon coupling, ... etc) will consequently become different.  

published in J. Appl. Cryst. 44(5) 921-927 (2011).
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In conclusion, application of the Rietveld method is hardly justified in some cases.  
A new analytical method based on maximum likelihood estimation has been developed.
The structures of FLUORO-APITITE and BARITE optimized by the new method have become closer to single-crystal data, 
while that of ANGLESITE was almost unchanged.
The structure of a La-Sr-Mn-O system optimized by the new method is significantly different from that optimized by the 
Rietveld method.
And the discussions about crystal & electronic structures, such as chemical bond, crystal field, orbital mixing, electronic 
correlation, electron-phon coupling et cetra should become different.
The framework of the new method has already been published in October last year.  



Conclusions

Application of the Rietveld (LSQ) method to powder X-ray diffraction data is hardly justified 
in some (many ?) cases.  

A new analytical method for powder diffraction intensity data based on MLE, superordinate 
concept of the LSQ method, has been developed.  The method incorporates estimation of 
statistical errors with structure refinement.  

The structure parameters of Ca3(PO4)3F & BaSO4 optimized by the new method have 
become closer to the single-crystal data, as compared with the results of the Rietveld 
refinement.  The structure parameters of PbSO4 was almost unchanged. 

The structure of a La-Sr-Mn-O system optimized by the new method is significantly different 
from those refined by the Rietveld analyses.  Discussions about crystal & electronic 
structures (chemical bond, crystal field, orbital mixing, electronic correlation, electron-
phonon coupling, ... etc) will consequently become different.  

published in J. Appl. Cryst. 44(5) 921-927 (2011).

33

Thank you for your attention.

Thank you for your attention.
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Statistical analysis of experimental data

　Baysian inference

　　↓　application of mode

　Maximum A Posteriori estimation

　　↓ 　uniform prior distribution

　Maximum Likelihood Estimation

　　↓ 　experimental error known

　Least Squares Method

general

special

Appendix: Background/Theory

(skipped)



Appendix 2: Ca5(PO4)3F, PbSO4, BaSO4

Likelihood estimator ＝ probability that observed dataset 

should appears
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Ca5(PO4)3F PbSO4 BaSO4

PRietveld 10–14698 10–17386 10–9567

PIda-Izumi 10–13654 10–15305 10–8682

PIda-Izumi / PRietveld 101044 102081 10885

The statistical model of the newmethod is 10885 ～ 102081 times more likely than 

that used in Rietveld analysis

(skipped)
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Discussions:

Q1 (Jim Kaduk, chairman): “Hmmm... Your talk makes us to think too many things before the 
excursion.  There have been some suggestions to change how to weight the data in the 
Rietveld analysis, and do you think adjustment of weighting scheme can make similar results as 
your method ?”
A1: “Yes, I think it is possible, but I think the maximum likelihood method is easier.”

Q2 (D. Balzar): “As you have mentioned, the errors in the optimized parameters were almost 
unchanged.  Do you have any idea to explain that ?”
A2: “Good question... Actually, the results are different from what I expected, and I am not sure 
about the reason... But as I show HERE (slide 11), I have changed the treatment of the peak 
profile intensity, but NOT changed the treatment of the back ground intensity in the statistical 
model.  You know most of the powder diffraction intensity data are background intensity, so I 
think that can be a reason why the estimated errors are not significantly changed... but I am not 
sure about that now.”


