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The uncertainty in measured diffraction intensities caused by particle statistics,

which originates from the limited number of crystallites satisfying the diffraction

condition, has been evaluated by a step-scan measurement about the rotation

angle of a specimen-spinning attachment of a laboratory powder X-ray

diffractometer. The residual statistical variance of the spinner-scan intensity

data, after subtraction of periodic drift and variance caused by counting

statistics, was assigned to the variance caused by particle statistics. Particle

statistics for a standard Si powder (NIST SRM640c) and three size fractions

(nominally 3–7, 8–12 and 18–22 mm in Stokes diameter) of quartz powder

separated by a sedimentation method have been analysed by scanning electron

microscopy (SEM) and the spinner-scan method using a powder X-ray

diffractometer. It has been confirmed that the observed ratio of the squared

diffraction-peak intensity to the variance caused by particle statistics is

proportional to the multiplicity of reflections predicted by the crystal structure.

The spinner-scan intensity data for the standard Si powder (NIST SRM640c),

the effective particle diameter of which was estimated at 5.6 mm by SEM image

analysis, was used as the standard for crystallite-size evaluation of quartz

powder based on analysis of spinner-scan data. The effective crystallite

diameters of the three quartz powder samples have been estimated at 6.5 (2),

11.7 (2) and 22.8 (2) mm by the analysis of the spinner-scan data, while the

effective particle diameters evaluated by SEM image analysis are 7.1, 12 and

25 mm, respectively. Other possible applications of the analysis of particle

statistics based on the spinner-scan method are also discussed.

1. Introduction

It is known that the statistical uncertainty in measured X-ray

diffraction intensity data originates mainly from counting

statistics and particle statistics. The errors caused by counting

statistics can be simply approximated by the square root of the

measured number of counts, when the count rate is sufficiently

lower than the reciprocal of the response time of the detection

system. One of the authors recently proposed a practical

method to evaluate the statistical errors affected by the finite

response time of X-ray detection systems (Ida, 2008).

In contrast to counting statistics, which are a general issue in

various fields using nuclear counting, photon counting and

neural counting (Teich, 1985), particle statistics are a problem

peculiar to powder diffractometry.

In the pioneering work on this subject by Alexander et al.

(1948), a theoretical framework for particle statistics has

almost been established. The relative deviation of the

diffraction intensity caused by the restricted number of

diffracting crystallites is simply given by

�Iparticle=hIi ¼ 1=n1=2eff ; ð1Þ

where neff is the effective number of crystallites that satisfy the

diffraction condition. The effective number neff is connected to

the total number of irradiated crystallites N and the prob-

ability p that each crystallite satisfies the diffraction condition,

that is, neff = Np when p is much less than unity.

The total irradiated number of crystallites N is given by

N ¼ f V=veff; ð2Þ
where f is the filling factor of the powder sample and V is the

irradiated volume, which is given by

V ¼ A��1 ð3Þ
for the cross section of the X-ray beam A and the linear

absorption coefficient of the specimen �, when the diffraction

intensity data are measured using a divergence slit with a fixed

open angle in symmetric reflection mode.

The effective particle volume veff in equation (2) is defined

by the ratio of the mean squared volume to the mean volume

of the crystallites,

veff ¼ hv2i=hvi; ð4Þ
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when the crystallite size distribution is taken into account

(Alexander et al., 1948).

Since the linear absorption coefficient � of a powder with

filling factor f is given by � = f�0 for the bulk linear absorption

coefficient �0, the total irradiated number N is independent of

the filling factor, and equation (2) can be reduced to

N ¼ A=�0veff: ð5Þ
The probability p for randomly oriented crystallites in

stationary specimens can be approximated by

p ¼ meff�!��=4�; ð6Þ
where meff is the effective multiplicity of reflection, and �!
and �� are the tolerance angles for the normal orientation of

the diffraction plane to deviate along the equatorial and axial

directions, respectively (de Wolff, 1958).

When the effect of a rotating specimen is simplified as the

expansion of the tolerance area from that of a rectangle,

�!��, to a circle, �(��)2/4, the probability p for crystallites

in a rotating specimen will be given by

p ¼ meffð��Þ2=16: ð7Þ
The effective multiplicity meff is defined for an overlapped

reflection with component multiplicity mj and intensity Ij by

the following equation (Alexander et al., 1948):

meff ¼
�P

j

mjIj

�2�P
j

mjI
2
j : ð8Þ

The tolerance angles �! and �� are given by

�! ¼ w=R; ð9Þ

�� ¼ h=2R sin �; ð10Þ
where R is the goniometer radius, � is the Bragg angle, and w

and h are the effective width and length, respectively, of the

line focus of the X-ray source (de Wolff, 1958).

Although the above formulae were originally intended to

describe the statistical properties of the integrated intensity of

a diffraction peak (Alexander et al., 1948), they can also be

applied to peak intensity, by modifying only the interpretation

of the effective width w (de Wolff, 1958). The effective width w

of the peak intensity is predominantly determined by the

geometry of the X-ray source, but it may also be affected by

the spectroscopic width of the X-ray beam and the width of

the receiving slit under the restrictions of the diffraction

condition. The effective length h is considered to be deter-

mined by the open angle �A of the Soller slits, which are

commonly adopted in modern Bragg–Brentano diffract-

ometers, as h = R�A (Smith, 2001).

In a typical case of R = 185 mm, w = 0.1 mm and �A = 5.0�,
the probabilities of crystallites in stationary and rotating

specimens satisfying the diffraction condition at a fixed

rocking angle are estimated at p = 6.0 � 10�5 and 1.5 � 10�2,

respectively, for the 111 reflection of Si with multiplicity m = 8

at the diffraction angle 2� = 28.4�, and the relative errors

caused by particle statistics for 5 mm crystallites in an irra-

diated volume of V = 3 mm3 will be about �Iparticle/hIi = 1.9

and 0.12%, respectively.

It should be emphasized that the improved accuracy

obtained by rotating the specimen is mainly caused by the

geometry of the diffractometer, where the tolerance angle for

the normal orientation of the diffraction plane along the axial

direction, �� = �A/2sin�, is much more generous than that

along the equatorial direction, �! = w/R.

Since the aspect ratio ��/�! is greater than 100 for lower-

angle diffraction peaks, it is expected that a slight rotation of

the specimen by about 1� has a similar effect to refilling the

crystalline powder in the sample holder. It is suggested that

quantitative analysis of particle statistics can be achieved by

simply recording the variation in the diffraction intensities on

rotation of the specimen.

In this study, we have conducted step-scan diffraction

intensity measurements of Si and quartz crystalline powder

samples with rotation of the specimen at fixed diffraction

angles, and examined the validity of the application of the

theory proposed by Alexander et al. (1948) to intensity data

collected at a fixed rocking angle. It will be shown that

quantitative evaluation of crystallite sizes larger than 1 mm is

enabled by applying this method. Other possible applications

of the method are also discussed.

2. Experimental

2.1. Samples

Standard Si powder (NIST SRM640c) was used without

further grinding or sieving. The median particle size of the Si

powder, determined by a laser scattering method, was

reported to be 4.9 mm in the certificate (Freiman & Trahey,

2000).

Three fractions of quartz powder samples were prepared by

separating crushed and ground Brazilian quartz crystals by a

sedimentation method. The nominal Stokes diameters of the

three quartz samples were 3–7, 8–12 and 18–22 mm.

2.2. SEM image analysis

Scanning electron microscopy (SEM) images of powder

samples were taken with a field-emission-type scanning elec-

tron microscope (Jeol JSM-7000F). Particle images were

extracted from SEM images with the aid of computer software

for image analysis (Scion Image; Scion Corporation, Mary-

land, USA). The numbers of extracted particle images were

1049 for Si, and 1134, 1049 and 1391 for the 3–7, 8–12 and 18–

22 mm fractions of quartz powder, respectively.

The size of each crystallite was specified as the diameter of a

circle with the same area as the particle image.

2.3. Spinner-scan measurements

A sample holder with a cylindrical hollow of ’ = 30 mm in

diameter and 0.6 mm in depth was filled with the powder

samples. A home-made specimen spinner attached to a

conventional powder diffractometer (Rigaku RAD-2C) with a

goniometer radius of R = 185 mm was used for step-scan
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measurements about the rotation angle of the specimen. ACu

target sealed tube operating at 40 kV and 30 mA was used as

the X-ray source. The take-off angle of the source X-ray beam

from the Cu target was about 4� and the effective width of the

X-ray source was estimated at w = 0.12 mm from the 2�-scan

intensity profile of the direct beam. The divergence/scattering

slit open angles were fixed at�DS/SS = 1� and a receiving slit of
width 0.15 mm was used. The width of the X-ray beam,

measured by locating a fluorescent plate at the specimen

position, wasWbeam = 10 mm. The cross section of the beam at

the specimen position was estimated at A = WbeamR�DS/SS =

32 mm2. A curved graphite monochromator attached on the

diffracted-beam side of the goniometer was adjusted for CuK�
wavelength.

400 diffraction intensity data were recorded by rotating the

specimen stepwise with an interval of 0.9� over 360�, for each
of 11 diffraction peaks at 2�/� angles fixed at the peak top

positions. The measurement time per step was varied for

different reflections, so that at least several hundred counts

were collected for each measurement step. The hkl indices of

the measured reflections, the effective multiplicitymeff and the

measurement time are listed in Table 1. The effective multi-

plicity of reflection was estimated based on the results of

Rietveld analysis using the program RIETAN developed by

Izumi & Ikeda (2000).

3. Results and discussion

3.1. SEM images

Typical SEM images of the Si (NIST SRM640c) and three

fractions of �-quartz powder samples are shown in Figs. 1 and

2. Extracted particle images of the Si sample are illustrated in

the lower panel of Fig. 1.

The cumulative volume distribution of Si powder obtained

by SEM image analysis is plotted in Fig. 3. Since the observed

size distribution could not be reasonably fitted by any of the

log-normal, � or Weibull distributions, it was fitted by a

modified formula of a �-distribution function given by

F�WðDÞ ¼ ��þ ð1þ �ÞP �þ 3=�; ðD=D0Þ�
� �

; ð11Þ
where � is the missing volume fraction of particles smaller

than the measurable size, D0 is a scale parameter, and � and �
are shape parameters for the model function (see Appendix

A). The normalized incomplete � function P(�; x) is defined
by

Pð�; xÞ � 1

�ð�Þ
Zx
0

t��1 expð�tÞ dt;

�ð�Þ �
Z1
0

t��1 expð�tÞ dt:
ð12Þ

It should be noted that the formula of equation (11) reduces to

the usual � distribution for � = 1 and to the Weibull distri-

bution for � = 1.

The optimized values of the fitting parameters are � =

0.0077 (4), D0 = 5.63 (7) mm, � = 0.210 (17) and � = 3.57 (9),

where the error values in parentheses are estimated by
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Table 1
Reflections measured by the spinner-scan method.

hkl is the index of reflection, meff is the effective multiplicity of reflection, FT0

is the measurement time per step for Si, and FT1, FT2 and FT3 are those for the
3–7, 8–12 and 18–22 mm quartz samples, respectively.

Si (NIST SRM640c) �-quartz

hkl meff FT0 (s) hkl meff FT1 (s) FT2 (s) FT3 (s)

111 8 0.5 100 6 1 1 1

220 12 1 101/011 9.85 0.5 0.5 0.5

311 24 2.5 110 6 2 2 2

400 6 3 102/012 8.23 3 2 2

331 24 6.5 111/111 12 5 4 5

422 24 5.5 200 6 3 3 3

333/511 32 12.5 201/021 10.39 5 5 5

440 12 8.5 112/112 12 1.5 1.5 1.5

531 48 18 202/022 9.24 5 5 5

620 24 10 103/013 6.01 12 9 10

533 24 19 211/121 23.72 3 3 3

Figure 1
SEM image of standard Si powder (NIST SRM640c) (upper panel) and
the extracted particle profiles (lower panel).
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assuming a fixed value of error �D = 0.1 mm in the measured

diameter. As a result, it can be assumed that the missing

fraction � is negligible, similar to the assumption applied in the

work of Alexander et al. (1948). The effective diameter of the

Si powder, defined by Deff � ð6veff=�Þ1=3, is estimated directly

from the raw data {Dj} by the equation

ðDeffÞraw ¼
�P

j

D6
j

.P
j

D3
j

�1=3

; ð13Þ

and from the fitting parameters D0, � and � by the equation

ðDeffÞfit ¼ D0

�ð�þ 6=�Þ
�ð�þ 3=�Þ

� �1=3

: ð14Þ

The effective diameter of the Si powder was estimated at

(Deff)raw = 5.6 mm from the raw data and also at (Deff)fit =

5.6 mm from the fitting parameters.

The median diameter for the volume distribution of

SRM640c numerically evaluated from the raw data of

measured diameter, and from the curve calculated using the

optimized fitting parameters, were 5.3 and 5.2 mm, respec-

tively, while the value reported in the certificate of SRM640c is

4.9 mm.

The diameter evaluated by the current method may be

slightly overestimated, because the unknown diameter along

the viewing direction on capturing a SEM image is assumed to

be equal to the diameter of a circle with the same area as the

particle image, while it is expected that non-spherical particles

tend to adhere, making the shortest diameter normal to the

face of the substrate. However, the effective diameter of Si is

assumed to be (Deff)Si = 5.6 mm in this study.

The cumulative volume distributions of quartz powder

obtained by SEM image analysis are plotted in Fig. 4. The

volume distributions of the quartz samples are satisfactorily

fitted by a model based on the log-normal distribution, which

is given by

FLNðDÞ ¼ ��þ 1þ �

2
1þ erf

lnD� lnDm � 3!2

ð2!Þ1=2
� �	 


;

ð15Þ
where � is the missing volume fraction of particles smaller

than the measurable size, Dm is the median diameter and ! is
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Figure 3
Cumulative particle-size distribution of Si (NIST SRM640c), plotted as
black dots, and the optimized modified �-distribution curve (grey line)
calculated with the parameters D0 = 5.63 mm, � = 0.210 and � = 3.57.

Figure 2
SEM images of (a) 3–7 mm, (b) 8–12 mm and (c) 18–22 mm fractions of
�-quartz powder.
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the logarithmic standard deviation. The error function erf(x) is

defined by

erfðxÞ � 2

�1=2

Zx
0

expð�t2Þ dt: ð16Þ

Table 2 lists the values of the optimized fitting parameters and

effective diameters, (Deff)raw and (Deff)fit. The effective

diameter (Deff)fit is calculated from the optimized fitting

parameters Dm and ! for the log-normal distribution by the

equation

ðDeffÞfit ¼ Dm exp 9!2=2
� � ð17Þ

(see Appendix B). 3.2. Spinner-scan data of Si powder

The observed spinner-scan intensity profile of the Si 111

reflection is shown in Fig. 5. Periodic drift in the observed

intensity profile, which is likely to be caused by slight mis-

alignment of the sample face, is modelled by Fourier expan-

sion up to the second order. The Fourier coefficients {ck} are

calculated by

ck ¼ n�1
Pn�1

j¼0

Ij exp �2�ikj=nð Þ ð18Þ

from the observed intensity data {Ij} (j = 0, . . . , n � 1), and the

profile of the periodic drift {(Idrift)j} is approximated by

ðIdriftÞj ¼
P2
k¼�2

ck exp 2�ikj=nð Þ: ð19Þ

The calculated drift profile is also shown in Fig. 5.

The average intensity hIi is straightforwardly given by the

zeroth-order Fourier coefficient c0. The statistical variance of

the residuals (	I)j = Ij � (Idrift)j is calculated by

ð�IobsÞ2 ¼ ðn� 5Þ�1 Pn�1

j¼0

ð	IÞ2j ; ð20Þ
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Figure 5
Spinner-scan intensity profile of the Si 111 reflection. The raw intensity
data I and assumed drift Idrift are drawn as grey and black lines,
respectively, in the upper panel. The lower panel shows the deviation 	I =
I � Idrift (grey line) and the �standard deviation predicted by counting
statistics (broken lines).

Figure 4
Cumulative particle-size distribution of (a) 3–7 mm, (b) 8–12 mm and (c)
18–22 mm fractions of �-quartz powder. Measured diameters are plotted
as black dots, and the optimized log-normal distribution curves,
calculated with optimized parameters, are drawn as grey lines.

Table 2
Results of SEM image analysis of quartz powder.

�D is the assumed error in the measured diameter, � is the missing volume
fraction below the measurable size, Dm is the median diameter, ! is the
logarithmic standard deviation, and (Deff)raw and (Deff)fit are the values of the
effective diameter evaluated from raw data and optimized fitting parameters,
respectively.

Stokes diameter (mm) 3–7 8–12 18–22

�D (mm) 0.2 0.4 0.8

� �0.0009 (0) �0.0000 (0) �0.0003 (0)

Dm (mm) 4.831 (6) 9.239 (18) 21.03 (2)

! 0.2836 (11) 0.2400 (12) 0.1937 (11)

(Deff)raw (mm) 7.1 11.8 25.3

(Deff)fit (mm) 7.0 12.0 27.7
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where the degree of freedom is assumed to be decreased by

five, because the second-order Fourier expansion of real data

includes five independent coefficients determined by the

source data. The errors in the evaluated variance,�[(�Iobs)
2],

were calculated by

f�½ð�IobsÞ2�g2 ¼
Xn�1

j¼0

ð	IÞ4j
n2

� ð�IobsÞ4
n

: ð21Þ

The variance caused by the particle statistics, (�Iparticle)
2, is

calculated from the observed variance (�Iobs)
2 by the equa-

tion

ð�IparticleÞ2 ¼ ð�IobsÞ2 � ð�IcountÞ2; ð22Þ
where (�Icount)

2 is the variance caused by the counting

statistics, which is approximated by (�Icount)
2 ’ hIi.

Then, the effective number of diffracting crystallites neff is

calculated by

neff ¼ hIi2=ð�IparticleÞ2 ð23Þ
for each reflection.

The values of the observed average intensity hIi, the

statistical variance (�Iobs)
2, the statistical variance assigned to

the particle statistics (�Iparticle)
2 and the effective number of

diffracting crystallites neff = hIi2/(�Iparticle)
2, evaluated for the

spinner-scan diffraction intensity data of Si powder (NIST

SRM640c), are listed in Table 3.

Fig. 6 shows the values of neff sin� calculated from the

spinner-scan data, and also the known multiplicity meff for all

measured reflections from Si powder. It is clearly shown that

the variation of the experimental values of neff sin� is very

similar to that of meff. The observed similarity confirms that

the particle statistics have certainly been evaluated by the

spinner-scan measurement, because no origin of statistical

variation except the particle statistics is likely to cause such

behaviour as is proportional to the multiplicity of reflections.

The effective crystallite diameter D0
eff is first calculated by

D0
eff ¼

3meffAw�A

4�2neff�0R sin �

� �1=3

; ð24Þ

according to the formula for stationary specimens given in

equation (6). The values of D0
eff for each reflection peak of Si,

calculated by assuming �0 = 142.6 cm�1 and with instrumental

parameters A = 32 mm2, w = 0.12 mm, �A = 5� and R =

185 mm, are also listed in Table 3.

Fig. 7(a) plots the values of D0
eff evaluated for all the

measured reflection peaks of Si versus the diffraction angle 2�.
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Figure 7
(a) Effective diameter D0

eff of Si powder calculated with assumed
instrumental parameters (circles) and the fitted curve of D0

fit =
(5.6 mm)(0.62/tan� � 0.41 + 1.33 tan�)�1/3 (broken line). (b) Calibrated
effective diameter Deff of Si powder (circles) and the average value of
5.6 mm (broken line).

Table 3
Results of spinner-scan measurements for Si powder (NIST SRM640c).

hIi is the average intensity, (�Iobs)
2 is the observed statistical variance,

(�Iparticle)
2 is the statistical variance assigned to particle statistics, neff is the

effective number of diffracting crystallites, D0
eff is the effective diameter

calculated from assumed values of geometric parameters of the diffractometer
and Deff is the calibrated value of the effective diameter.

hkl

2�
(�) hIi (�Iobs)

2 (�Iparticle)
2 neff

D0
eff

(mm)

Deff

(mm)

111 28.59 2304 (3) 3440 (260) 1140 (260) 4670 (1100) 4.1 (3) 5.0 (4)

220 47.44 2579 (3) 4890 (340) 2310 (340) 2900 (440) 4.6 (2) 5.2 (3)

311 56.26 3266 (4) 7140 (470) 3880 (470) 2750 (340) 5.6 (2) 6.1 (3)

400 69.24 1211 (3) 2720 (180) 1510 (180) 970 (120) 4.7 (2) 5.0 (2)

331 76.48 4157 (5) 9680 (690) 5520 (690) 3130 (400) 4.9 (2) 5.2 (2)

422 88.12 4532 (5) 10770 (760) 6240 (760) 3290 (410) 4.7 (2) 5.0 (2)

333/511 95.05 5028 (6) 12310 (840) 7290 (840) 3470 (410) 4.9 (2) 5.4 (2)

440 106.79 2344 (4) 5930 (400) 3590 (400) 1530 (180) 4.5 (2) 5.2 (2)

531 114.16 9705 (8) 25800 (2000) 16100 (2000) 5860 (740) 4.6 (2) 5.4 (2)

620 127.60 5385 (6) 13510 (960) 8100 (960) 3570 (430) 4.2 (2) 5.4 (2)

533 136.92 6821 (6) 16200 (1100) 9400 (1100) 4950 (600) 3.7 (2) 5.2 (2)

Figure 6
Product of the effective number of crystallites neff with sin� (open circles)
and the known effective multiplicity of reflection meff for Si (dots
connected by broken lines).
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It should be noted that the relative error for the particle

diameter is suppressed by a factor of 1/3 from that of the

particle volume evaluated directly by the spinner-scan

measurement. The weighted average of D0
eff is nominally

estimated atD0
eff = 4.52 (6) mm, while the corresponding value

estimated by the SEM image analysis is (Deff)Si = 5.6 mm.

At the moment, it is difficult to derive an a priori formula

for the systematic behaviour of the evaluated effective

diameter D0
eff depending on the diffraction angle. However,

such dependence is likely to be caused by a combination of the

neglected spectroscopic distribution of the source X-ray, the

finite receiving-slit width and instrumental aberrations, as has

been suggested by de Wolff (1958). When the systematic

deviation is assumed to be caused predominantly by instru-

mental effects, it is expected that a common calibration curve

can be applied to the intensity data from different samples

when they are measured under the same conditions.

Taking into account the uncertainties of the instrumental

parameters of the diffractometer on the evaluation ofD0
eff, and

the above systematic deviation, the formula for evaluating the

effective diameter Deff should be modified using the equation

Deff ¼ D0
effðDeffÞSi=ðD0

effÞfit; ð25Þ
where (Deff)Si = 5.6 mm is the value determined by the SEM

image analysis, and ðD0
effÞfit is the correction that should be

applied to the observed values of D0
eff.

In this study, the systematic behaviour ofD0
eff for the Si data

is modelled by the following formula depending on the

diffraction angle 2�,

ðD0
effÞfit ¼ ðDeffÞSiðt0= tan � þ t1 þ t2 tan �Þ�1=3; ð26Þ

because it is expected that the effect of spectroscopic broad-

ening is proportional to tan�, and the dependence propor-

tional to 1/tan� is dominant in the effect of instrumental

aberrations (Ida & Toraya, 2002). The optimized values of the

fitting parameters are estimated at t0 = 0.62 (19), t1 =

�0.41 (45) and t2 = 1.33 (23) by a nonlinear least-squares

fitting method. The fitting curve drawn in Fig. 7(a) satisfac-

torily reproduces the observed systematic behaviour.

The formula to evaluate the calibrated value of the effective

diameter Deff is then given by

Deff ¼
meffð138�m2Þð0:62= tan � � 0:41þ 1:33 tan �Þ

�0neff sin �

� �1=3

:

ð27Þ
The values of the effective diameter Deff calculated by equa-

tion (27) are listed in the last column of Table 3 and are also

shown in Fig. 7(b). Coincidence of the calibrated values Deff

evaluated from different reflections of Si is significantly

improved from that of the crude estimation D0
eff .

3.3. Spinner-scan data of quartz powder

The spinner-scan intensity data of the three fractions of

quartz powder have been analysed in the same manner as the

Si powder sample, except that the bulk linear absorption

coefficient of �0 = 89.81 cm�1 is used for the calculation of the

effective number of diffracting crystallites neff, the known

effective multiplicity meff of �-quartz (see Table 1) is used for

the calculation of D0
eff, and the calibration curve

ðDeffÞSi=ðD0
effÞfit determined from the Si data is used for the

estimation of Deff.

The values of the observed average intensity hIi, the

statistical variance (�Iobs)
2, the statistical variance assigned to

particle statistics (�Iparticle)
2, the effective number of

diffracting crystallites neff = hIi2/(�Iparticle)
2, and the crude and

calibrated effective diameters D0
eff and Deff, evaluated for the

three fractions of quartz powder, are listed in Tables 4–6.

The calibrated values of the effective diameter Deff for 11

reflections of the three quartz powder samples are plotted in

Fig. 8. No significant systematic deviation of Deff is detected,

except that the value estimated for the 100 reflection seems to
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Figure 8
Effective diameters Deff evaluated for (a) 3–7 mm, (b) 8–12 mm and (c)
18–22 mm fractions of quartz powder. The values evaluated for each
reflection are plotted as circles, and the weighted average values, 6.5 (2),
11.7 (2) and 22.8 (2) mm, respectively, are shown as broken lines.
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be overestimated, which may be caused by an error in the

extrapolation of the calibration curve.

It seems that the errors estimated based on the propagation

from the value calculated by equation (21) are slightly

underestimated, but acceptable for the results of the 3–7 and

8–12 mm fractions of the quartz samples. The uncertainties in

Deff evaluated for the 18–22 mm quartz sample may be partly

caused by the small number of diffracting crystallites neff,

ranging only from 27 to 107 for the applied measurement

conditions. It is suggested that accuracy in size estimation for

large crystallites will be improved by expanding the irradiated

volume V or enhancing the probability p, which may be

achieved by changing the measurement conditions.

Even though the calibration formula given by equation (26)

does not have a fully concrete theoretical basis, it can be

concluded that the dependence on the diffraction angle has

been successfully removed.

The weighted average values ofDeff are estimated at 6.5 (2),

11.7 (2) and 22.8 (2) mm for the 3–7, 8–12 and 18–22 mm
fractions of quartz powder, while the values estimated by the

SEM image analysis were 7.1, 11.8 and 25.3 mm. Any discre-

pancy might be caused by the assumptions of the SEM image

analysis rather than the analysis of the spinner-scan data.

NIST SRM640c Si powder might not be an ideal material as

the standard for evaluation of particle statistics, because of the

irregular shape and broad size distribution, as can be seen in

the SEM image (Fig. 1). It is expected that a more reliable

analysis could be achieved if a standard crystalline powder

with a more regular shape and narrower size distribution were

available.

The method will also be applicable to a parallel-beam

geometry using synchrotron or multilayer mirror optics, if the

effective focal size is evaluated using a standard powder. Use

of synchrotron X-rays may expand the sensitivity of the

method to smaller crystallite sizes, because a smaller focal size

is expected for a synchrotron X-ray source.

3.4. Possible applications of the spinner-scan method

The results of the current study show that the effective

number of crystallites neff that satisfy the diffraction condition

can certainly be measured, simply by rotating the specimen

stepwise and recording the diffraction peak intensities.

As has been suggested in x3.2, information on the multi-

plicity of the measured reflection can be obtained experi-

mentally by this method without any preliminary knowledge

of crystal symmetry or atomic arrangements.

The effective multiplicity of reflection is formally calculated

by

meff ¼ neff�0D
3
efff ð�Þ; ð28Þ

f ð�Þ ¼ 4�2R sin �

3Aw�A

ðD0
effÞfit

ðDeffÞSi

� �3

; ð29Þ

where the calibration curve f(�) is determined by the

measurement of the standard sample. The formula for f(�)
applied in this study is simplified as

f ð�Þ ¼ sin �= ð138�m2Þð0:62= tan � � 0:41þ 1:33 tan �Þ� �
:

ð30Þ
Note that the effective number of diffracting crystallites is

straightforwardly evaluated by the spinner-scan measurement

as neff = hIi2/(�Iparticle)
2. The absorption coefficient �0 is

obtained from the chemical composition and the density.

Then, the value of the multiplicity of reflection meff can be
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Table 4
Results of spinner-scan measurements for the nominally 3–7 mm fraction
of quartz powder.

See Table 3 for definitions.

hkl

2�
(�) hIi (�Iobs)

2 (�Iparticle)
2 neff

D0
eff

(mm)

Deff

(mm)

100 20.77 904 (2) 1180 (80) 280 (80) 2960 (870) 5.6 (5) 8.2 (8)

101/011 26.56 2032 (3) 3000 (200) 990 (200) 4170 (870) 5.4 (4) 7.3 (5)

110 36.46 636 (1) 710 (50) 80 (50) 5400 (3600) 3.8 (8) 4.7 (1.0)

102/012 39.38 824 (2) 1020 (70) 190 (70) 3500 (1300) 4.7 (6) 5.8 (7)

111/111 40.23 752 (2) 940 (70) 190 (70) 3000 (1000) 5.6 (7) 6.8 (8)

200 42.37 661 (2) 1000 (70) 340 (70) 1300 (280) 5.8 (4) 6.9 (5)

201/021 45.71 737 (1) 840 (60) 100 (60) 5400 (3100) 4.2 (8) 5.0 (1.0)

112/112 50.06 717 (2) 1090 (70) 370 (70) 1390 (270) 6.8 (4) 7.8 (5)

202/022 54.79 751 (2) 990 (70) 240 (70) 2390 (660) 5.1 (5) 5.7 (5)

103/013 55.24 802 (2) 1120 (90) 320 (90) 2020 (560) 4.6 (4) 5.2 (5)

211/121 59.87 993 (2) 1130 (80) 130 (80) 7300 (4300) 4.6 (9) 5.2 (1.0)

Table 5
Results of spinner-scan measurements for the nominally 8–12 mm fraction
of quartz powder.

See Table 3 for definitions.

hkl

2�
(�) hIi (�Iobs)

2 (�Iparticle)
2 neff

D0
eff

(mm)

Deff

(mm)

100 20.79 825 (5) 2200 (150) 1250 (150) 750 (90) 8.8 (3) 12.9 (5)

101/011 26.56 1641 (8) 6840 (490) 4760 (490) 920 (100) 9.0 (3) 12.2 (4)

110 36.46 550 (4) 1730 (150) 1070 (150) 410 (60) 9.0 (4) 11.1 (5)

102/012 39.40 795 (7) 1440 (110) 850 (110) 410 (50) 9.7 (4) 11.8 (5)

111/111 40.21 739 (4) 1380 (110) 740 (110) 560 (80) 9.9 (5) 11.9 (6)

200 42.37 560 (4) 2190 (150) 1520 (150) 290 (30) 9.5 (3) 11.4 (4)

201/021 45.71 673 (4) 2290 (170) 1540 (170) 370 (40) 10.3 (4) 12.1 (5)

112/112 50.06 636 (5) 2180 (150) 1450 (150) 360 (40) 10.6 (4) 12.2 (4)

202/022 54.79 663 (6) 2550 (180) 1780 (180) 330 (30) 9.7 (3) 11.1 (4)

103/013 55.25 629 (6) 2360 (190) 1740 (190) 220 (20) 9.7 (3) 11.0 (4)

211/121 59.88 978 (5) 2390 (190) 1390 (190) 720 (100) 10.0 (5) 11.3 (5)

Table 6
Results of spinner-scan measurements for the nominally 18–22 mm
fraction of quartz powder.

See Table 3 for definitions.

hkl

2�
(�) hIi (�Iobs)

2 (�Iparticle)
2 neff

D0
eff

(mm)

Deff

(mm)

100 20.80 968 (2) 8260 (600) 7430 (600) 91 (7) 17.8 (5) 26.2 (7)

101/011 26.57 2086 (4) 27700 (2100) 26000 (2100) 103 (9) 18.6 (5) 25.3 (7)

110 36.47 660 (2) 5330 (440) 4780 (440) 63 (6) 16.7 (6) 20.7 (6)

102/012 39.40 591 (2) 16900 (1500) 16100 (1500) 39 (4) 21.3 (7) 25.8 (8)

111/111 40.22 643 (2) 6340 (570) 5600 (570) 98 (10) 17.7 (6) 21.4 (7)

200 42.38 668 (2) 7570 (530) 7000 (530) 45 (4) 17.9 (4) 21.4 (5)

201/021 45.72 756 (2) 7840 (690) 7170 (690) 63 (6) 18.7 (6) 22.0 (7)

112/112 50.08 727 (2) 10000 (840) 9400 (840) 43 (4) 21.7 (6) 25.0 (7)

202/022 54.80 770 (3) 12400 (890) 11740 (890) 37 (3) 20.2 (5) 23.0 (6)

103/013 55.26 616 (2) 15100 (1500) 14500 (1500) 27 (3) 19.4 (7) 22.1 (8)

211/121 59.88 1001 (2) 9900 (1700) 8920 (700) 107 (8) 19.0 (5) 21.4 (6)
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calculated using equation (28) if only the crystallite size Deff is

determined.

The experimental values ofmeff, calculated for Si and the 8–

12 mm fraction of the quartz powder sample using equations

(28) and (30), and the values predicted by the known crystal

structures, are plotted in Fig. 9. The values of the effective

diameter Deff = 5.6 and 12 mm, determined by SEM image

analysis for the Si and quartz samples, respectively, are used

for the calculation.

Even though the calibration curve has been adjusted for the

Si data, the good coincidence between the predicted and

observed values of meff shown in Fig. 9(a) indicates that the

relative values of the effective multiplicity meff can be

experimentally evaluated by this method without any standard

samples or knowledge of particle size.

The values of meff for the 8–12 mm quartz powder evaluated

by the spinner-scan measurement coincide absolutely with the

values predicted by the crystal structure, almost within the

experimental errors, as can be seen in Fig. 9(b). This means

that the absolute value of the multiplicity of reflection can be

evaluated by this method without any knowledge of the crystal

structure, when the effective crystallite diameter is known.

Evaluation of the relative values of meff will be much easier,

because the values of �0 and Deff are not needed. It is thus

expected that the method will provide valuable information

on the determination of an unknown structure.

The results presented in x3.3 show that crystallite sizes over

a range of several micrometres, which cannot be evaluated by

line-broadening analysis, can certainly be evaluated by the

spinner-scan method. The values for different diffraction

peaks coincide well for all the samples examined in this study.

This means that the evaluation can be completed by

measurement of the strongest diffraction peak, which will only

take a few minutes, when a random orientation of the crys-

tallites can be assumed.

It is further suggested that the preferred orientation of

crystallites may also be evaluated by this method, simply by

measuring different diffraction peaks, because the number of

diffracting crystallites neff for each reflection should in prin-

ciple be exactly proportional to the probability that the

normal direction of the diffraction plane coincides with the

direction normal to the face of the specimen.

Since the analysis of spinner-scan data provides additional

information almost independent of that included in one-

dimensional powder diffraction data, application of the

method can refine any results of an analysis based on powder

diffraction data. For example, the method can be used to test

the validity of structure models from indexing and structure

analysis, and to distinguish a strong impurity diffraction peak

from weak main-phase diffraction peaks in multiphase

mixtures by the different numbers of diffracting crystallites

neff.

Finally, the authors would like to note that the spinner-scan

method is applicable not only to powder samples but also to

polycrystalline materials for practical use, such as sintered

ceramics or alloys.

4. Conclusions

The statistical properties of powder X-ray diffraction inten-

sities measured by a step scan about the rotation angle of a

specimen-spinning attachment have been investigated.

The results show that the statistical variance assigned to

particle statistics can be quantitatively evaluated by this

method, and estimation of crystallite size over a range of

several micrometres, which is practically impossible by

conventional methods based on line-broadening analysis, has

been achieved at considerable accuracy.

It is also suggested that the method is useful for various

applications based on powder diffractometry, including

determination of unknown structures, structure refinement,

evaluation of preferred orientation, and qualitative and

quantitative analysis of multiphase mixtures.

APPENDIX A
Modified C distribution

The probability density function of the modified � distribution

for diameter D used in this study is given by

f�WðDÞ ¼ �

�ð�ÞD0

D

D0

� ����1

exp � D

D0

� ��
" #

: ð31Þ

The average value of Dj for the distribution is obtained by

solving the equation
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Figure 9
Effective multiplicity of reflection meff for (a) Si and (b) 8–12 mm quartz
samples, as predicted by the known crystal structure (dots connected with
broken lines) and as evaluated by the spinner-scan measurement (open
circles).
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hDji�W ¼ R1
0

Djf�WðDÞ dD; ð32Þ

which gives

hDji�W ¼ �ð�þ j=�ÞDj
0=�ð�Þ: ð33Þ

The effective diameter for particle statistics in the modified

�-distribution model is given by

Deff ¼
hD6i
hD3i

� �1=3

¼ D0

�ð�þ 6=�Þ
�ð�þ 3=�Þ

� �1=3

: ð34Þ

The formula for f�W(D) is reduced to the usual � distribution

f�ðDÞ ¼ 1

�ð�ÞD0

D

D0

� ���1

exp � D

D0

� �
ð35Þ

for � = 1, and to the Weibull distribution

fWðDÞ ¼ �

D0

D

D0

� ���1

exp � D

D0

� ��
" #

ð36Þ

for � = 1.

The relative volume fraction based on the distribution is

derived by solving

FðDÞ ¼ hD3i�1
�W

RD
0

t3f�WðtÞ dt; ð37Þ

which gives

FðDÞ ¼ P �þ 3=�; ðD=D0Þ�
� �

: ð38Þ

APPENDIX B
Properties of log-normal distribution

The probability density function of the log-normal distribution

for diameter D is given by

fLNðD;Dm; !Þ ¼
1

ð2�Þ1=2! exp � ðlnD� lnDmÞ2
2!2

� �
: ð39Þ

The average of Dj is given by solving the equation

hDji ¼ R1
0

DjfLNðD;Dm; !Þ dD; ð40Þ

which gives

hDji ¼ Dj
m exp j2!2=2

� �
: ð41Þ

The effective diameter for particle statistics in the log-normal

distribution model is then given by

Deff ¼ hD6i=hD3i� �1=3¼ Dm exp 9!2=2
� �

: ð42Þ
The relative volume fraction for the log-normal distribution is

derived by solving

FðDÞ ¼ hD3iLN
RD
0

t3fLNðtÞ dt; ð43Þ

which gives

FðDÞ ¼ 1

2
1þ erf

lnD� lnDm � 3!3

21=2!

� �� �
: ð44Þ
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