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The statistical properties of intensities affected by counting loss based on

conventional non-extended and extended dead-time models are examined by a

Monte Carlo method. It has been confirmed that the variance of the counted

pulses for the non-extended dead-time model with the rate of generated pulses

r and the dead-time � is given by �2
non ¼ �non=ð1 þ r�Þ2, while that for the

extended dead-time model is given by �2
ext ¼ �ext½1 � 2r� expð�r�Þ�, as proposed

by Laundy & Collins [(2003). J. Synchrotron Rad. 10, 214–218], for the mean

values of counted pulses �non and �ext, respectively. Practical formulae to

estimate the statistical errors of the corrected intensities are also presented.

1. Introduction

Counting methods are widely used to measure the intensity of X-rays.

Independently generated signal pulses are expected to obey the

Poisson distribution, which predicts that the possibility for the

number of pulses n during the measurement period T is given by

PPoissonðnÞ ¼ ðn!Þ�1ðrTÞn expð�rTÞ;
where r is the average rate of generated pulses. The mean and

variance of the Poisson distribution are simply given by

�Poisson ¼ �2
Poisson ¼ rT:

Therefore, the statistical errors of the intensity measured by a

counting method can naturally be modelled by the square root of the

measured count, if a Poisson distribution of the pulses is assumed.

However, it is not expected that the intensity measured with a

realistic counting system should strictly obey the Poisson distribution,

because it is always affected by the counting loss caused by the finite

response time of a detector and/or the electronic circuits in the

detection system.

The probability for the number of counted pulses m based on the

non-extended dead-time model can be expressed as

PnonðmÞ ¼ ðm!Þ�1ð1 þ r�Þ½rðT �m�Þ�m exp½�rðT �m�Þ�; ð1Þ
where � is the dead-time. Details about the derivation and validation

of the above formula will be discussed elsewhere. The mean and

variance of the above distribution are approximately given by

�non ¼ rT=ð1 þ r�Þ; ð2Þ

�2
non ¼ �non=ð1 þ r�Þ2: ð3Þ

Recently, Laundy & Collins (2003) have reported analytical formulae

for the statistical properties of a pulse-overlap model for the counting

loss, which includes the conventional extended dead-time model as a

special case. According to their results, the mean and variance for the

extended dead-time model are given by

�ext ¼ rT expð�r�Þ; ð4Þ

�2
ext ¼ �ext½1 � 2r� expð�r�Þ�: ð5Þ

It should be noted that the variance of the number of counted pulses

is expected to be smaller than the mean value in both the non-

extended and the extended dead-time models, while it should coin-

cide with the mean in the case of the Poisson distribution.

Since all the formulae given in equations (2)–(5) are derived as the

solution for the limit T � �, it will be worth examining the validity

of the application to the case of a finite ratio of T to �.

In this communication, the statistics of the non-extended and

extended dead-time models are examined by applying a Monte Carlo

method with a simple algorithm, and compared with the theoretical

values calculated from equations (2)–(5). The statistical errors in the

corrected intensity estimated by the conventional models of counting

loss are also discussed.

2. Simulation

A simulation of conventional models for counting loss applied to

pulses that obey the Poisson distribution is easily implemented as

follows: (i) a pulse is generated at the time t ¼ t0 þ�t after a random

interval �t from the time t0 when the last pulse is generated, where

�t is calculated by �t ¼ �ðln xÞ=r from a random number x evenly

distributed between 0 and 1; (ii) the pulse is counted when t � t0 >�
in the case of the extended dead-time, and t � tv >�, where tv is the

arrival time of the last counted pulse, in the case of the non-extended

dead-time model; (iii) t0 is replaced by t, and tv is also replaced by t

when the pulse is counted. Processes (i)–(iii) are repeated while t<T.

Fig. 1 plots the mean and variance of 1000 trials of the non-

extended dead-time simulations for various rates of pulse r. The

measurement period and the dead-time are fixed at T ¼ 1 and

� ¼ 0:001. The results of the simulation are well modelled by the

curves given by equations (2) and (3) up to r ’ ��1.

The corrected intensity of each non-extended dead-time simula-

tion is calculated by

ci ¼ mi=ð1 �mi�=TÞ; ð6Þ

where mi is the number of counted pulses. The variance of the

corrected intensity fcig and the corresponding variance curve derived

from equation (2), given by
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�2 ¼ rTð1 þ r�Þ; ð7Þ
are also plotted in Fig. 1. Even though the simulated statistical errors

of the corrected intensity rapidly increase when the rate of pulse r

approaches ��1, the errors are reasonably modelled by applying

equation (7).

Fig. 2 plots the results for the extended dead-time simulations and

corresponding theoretical curves. The parameters used in the

extended dead-time simulation are the same as those for the non-

extended dead-time simulation. The results of simulation are well

modelled by the theoretical curves calculated by equations (4) and

(5), again up to r ’ ��1.

The corrected intensity data fcig for the extended dead-time

simulation are calculated by applying the following approximation

(Ida & Iwata, 2005):

ci ¼ r00T=ð1 � r00t1Þ;

r00 ¼ �t�1
2 lnf½1 þ ð1 � 4mit2=TÞ1=2�=2g;

t1 ¼ ½1 � 3ð6=13Þ1=2=2��;

t2 ¼ ð6=13Þ1=2�:

The variance of the corrected intensity from the extended dead-time

simulation is well modelled by the variance curve given by (Laundy &

Collins, 2003)

�2 ¼ rTð1 � r�Þ�2½expðr�Þ � 2r��; ð8Þ

as shown in Fig. 2.

In conclusion, the statistical errors of the corrected intensity, which

should properly be taken into account in least-squares or maximum-

likelihood analysis (Antoniadis & Berruyer, 1990), can be estimated

by applying equation (7) or (8).
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Figure 2
Mean and variance of the extended dead-time simulation and the theoretical
dependence on variation of the average rate of pulses obeying Poisson statistics.

Figure 1
Mean and variance of the non-extended dead-time simulation and the theoretical
dependence on variation of the average rate of pulses obeying Poisson statistics.
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