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Non-extended and extended dead-time models, a pulse-height analyser (PHA)

windowing model, and a model intermediate between the non-extended and

extended models for losses in counting methods are compared. The validities of

the methods are examined by application to the analysis of powder diffraction

peak intensity profiles measured by a foil method. The intermediate model

including parameters for the dead-time and degree of extension can reproduce

both the non-extended and the extended models and also intermediate

dependence between the two models. A convenient approximate formula for

the intermediate model, the maximum relative deviation of which is 0.0003, is

also proposed. The determination of the parameters and a correction for the

measured intensities can easily be achieved by applying the approximate model,

because it provides simple formulae for the correction function expressed as a

combination of elementary functions. Experimental and analytical methods for

precise evaluation of the parameters to specify the counting losses are also

presented. Systematic deviations of the observed dependence from the non-

extended and extended dead-time models have been detected by the precise

analyses of experimental data, while the PHA windowing model, intermediate

model and its approximation have reproduced the observed dependence within

the experimental errors.

1. Introduction

The counting method for evaluating diffracted beam intensity

is widely adopted in X-ray diffraction measurements. Detec-

tion methods with counting devices are often more favourable

for precise structure analyses because of the intrinsically linear

sensitivity and well defined nature of the statistical errors, in

contrast to methods with time-integrating detectors, such as an

imaging plate (IP). However, the effect of counting losses due

to the dead-time of the detector or the finite response time of

the detection circuits may cause serious systematic errors in

the intensities observed by the counting method, especially at

high count rates.

Counting losses are usually modelled by a non-extended

dead-time model or an extended dead-time model (Quintana,

1991). In the non-extended dead-time model, it is assumed

that an event causes dead-time �, but the following events

during the time � do not extend the dead-time. In the extended

dead-time model, the same event would extend the length of

the dead-time by � starting at the arrival time of the uncounted

event.

The throughput function of the non-extended dead-time

model (Müller, 1973) is given by

n ¼ fnon�exðr; �Þ ¼ r=ð1þ r�Þ; ð1Þ

where n is the observed count rate, r is the true count rate and

� is the dead-time. The solution of the above equation is given

by

r ¼ f�1
non�exðn; �Þ ¼ n=ð1� n�Þ; ð2Þ

which can immediately be applied to correct the counting

losses.

The counting losses in a realistic detection system are more

likely to be modelled by the extended dead-time model

(Omote, 1990; Reed, 1972), given by

n ¼ fexðr; �Þ ¼ r expð�r�Þ: ð3Þ
Cousins (1994) has proposed the following formula for

synchrotron X-ray sources,

n ¼ T�1
b expð�mrTbÞ½1� expð�rTbÞ�; ð4Þ

where Tb is the bunch interval and m is the largest integer not

greater than �=Tb. For the usual case of � � Tb, equation (4)

can simply be reduced to the extended dead-time model.

The actual losses in the counting method are affected by the

time structure of the X-ray source and the operating char-

acteristics of the detector/amplifier system. When a pulse-

height analyser (PHA) or a single-channel analyser (SCA) is

used to reduce the effect of electrical noise, stray light or

higher-order harmonics of the monochromated incident beam,
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the settings for the PHA windowing may also affect the loss of

counts (Cousins, 1994). Therefore, experimental evaluation of

counting losses seems more practical than fully theoretical

prediction requiring many parameters to be determined.

Quintana (1991) has proposed a practical analytical method

to evaluate the dead-time parameter in the extended model,

from the experimental data measured by the foil method of

Chipman (1969), which can easily be performed with most

X-ray diffraction setups. However, the accuracy of the

correction will be restricted if the actual counting losses

deviate from the exact extended model.

The present study is intended to establish an improved

method to determine the dependence of the observed count

rate on the true count rate from the data measured by Chip-

man’s foil method, and to correct the counting losses in the

observed diffraction intensity data, allowing deviation from

the non-extended or extended dead-time models. A conve-

nient formula for correction, which can be used for inter-

mediate dependence between non-extended and extended

dead-time models, is proposed.

2. Models for counting losses

2.1. PHA windowing model

When a pulse-height analyser is used to count the pulses,

the output count rate will be affected by the allowed pile-up

level L (Cousins, 1994). If all the input pulses are assumed to

have the same rectangular shape, the output count rate

through the PHA will be given by

n ¼ r expð�2r�wÞ
PL�1

l¼0

ðr�wÞl=l!; ð5Þ

where �w is the width of a pulse and L is the allowed pile-up

level normalized to the single-pulse-height level. The deriva-

tion of the formula is given in Appendix A. The above formula

can readily be extended for non-integer values of L by the

equation

n ¼ r expð�r�wÞQðL; r�wÞ; ð6Þ

where the function Qð�; zÞ is the Legendre incomplete gamma

function of the second kind, defined by

Qð�; zÞ � R1
z

t��1 expð�tÞ dt
R1
0

t��1 expð�tÞ dt

� ��1

: ð7Þ

Since the throughput function is specified by two continuous

parameters, �w and L in equation (6), a usual nonlinear curve

fitting method can be applied to determine those parameters

from the experimental data. The profiles of the throughput

function on variation of the allowed pile-up level L are shown

in Fig. 1.

When the allowed pile-up level is equal to the single-pulse-

height level (L = 1), the detected count rate is given by

n ¼ r expð�2r�wÞ; ð8Þ

which is identical to the extended dead-time model for

� ¼ 2�w. In the L!1 limit, the detected count rate is

identical to the extended model for � ¼ �w given by

n ¼ r expð�r�wÞ: ð9Þ
The derivatives of the function at the origin (r = 0) show

singularities for some values of L as follows,

ðdn=drÞ0 ¼ 1; ð10Þ

ðd2n=dr2Þ0 ¼
�1 ðL< 1Þ
�4�w ðL ¼ 1Þ
�2�w ðL> 1Þ

;

8<
: ð11Þ

ðd3n=dr3Þ0 ¼

þ1 ðL< 1Þ
12�2

w ðL ¼ 1Þ
�1 ð1<L< 2Þ

0 ðL ¼ 2Þ
3�2

w ðL> 2Þ

8>>>><
>>>>:

; ð12Þ

while the non-extended and extended dead-time models have

no singularities at the origin. The first, second and third

derivatives of the non-extended and extended dead-time

models are given by

f 0non�exð0; �Þ ¼ 1; ð13Þ

f 00non�exð0; �Þ ¼ �2�; ð14Þ

f 000non�exð0; �Þ ¼ 6�2; ð15Þ
and

f 0exð0; �Þ ¼ 1; ð16Þ

f 00exð0; �Þ ¼ �2�; ð17Þ

f 000exð0; �Þ ¼ 3�2: ð18Þ
The throughput of the PHA looks very much like the

extended dead-time model, as can be seen in Fig. 1, even

though there exist slight deviations for L 6¼ 1. Comparison of

the first few derivatives at the origin suggests that the devia-

tion is in the direction of the non-extended model for

0<L< 1 and in the opposite direction for 1<L.
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Figure 1
Throughput predicted by a simple model for the effect of PHA
windowing.
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2.2. Intermediate model between non-extended and
extended models

An intermediate model between the non-extended and

extended dead-time models can be constructed by synthe-

sizing the two functions as follows:

n ¼ fex½fnon�exðr; �1Þ; �2�; ð19Þ
where �1 and �2 are the dead-time parameters for the non-

extended and extended components of the function, respec-

tively. The first, second and third derivatives of the above

function at the origin are given by

ðdn=drÞ0 ¼ 1;

ðd2n=dr2Þ0 ¼ �2ð�1 þ �2Þ;

ðd3n=dr3Þ0 ¼ 6�2
1 þ 12�1�2 þ 3�2

2;

while the derivatives of the component functions are given by

equations (13)–(18). It will be convenient to substitute the

total dead-time parameter � and the degree of extension � for

the parameters �1 and �2, via the equations

� � �1 þ �2; ð20Þ

� � �2
2=�

2; ð21Þ
which gives the formula

fintermediateðr; �; �Þ ¼ r½1þ ð1� �1=2Þr���1

� expf��1=2r�½1þ ð1� �1=2Þr���1g: ð22Þ
The formula exactly gives the non-extended and extended

dead-time dependences for � = 0 and � = 1, respectively. The

value of the third derivative of the throughput function at the

origin is linearly varied by changing the parameter � from 0

to 1.

Even if a sufficiently high count rate is not experimentally

available, or the statistical errors of the experimental data are

not small enough to estimate the precise value for the degree

of extension �, the total dead-time parameter � can be esti-

mated more safely, because it is determined by the initial

curvature of the throughput. The parameter � can easily be

treated as a fixed parameter, if necessary.

2.3. Approximation for intermediate model

In order to evaluate the true count rate r from the observed

count rate n, the inverse function of the throughput function is

needed, while both the PHA windowing and the intermediate

models for counting losses described in xx2.1 and 2.2 lack

simple formulae for the inverse functions. Although the

solutions can be evaluated numerically by iterative calculation

based on Newton’s method (Cousins, 1994), the codings for

Newton’s method are often annoying, because the accuracy,

stability and efficiency of the iterative calculation strongly

depend on the initial guess of the solution, maximum iteration

times and criteria for convergence.

In this section, an approximate formula, which has a simple

expression of its inverse function, is proposed. The scheme for

constructing the approximate formula is described in

Appendix B.

The approximate model is given by the equations

n ¼ f ðr; �; �Þ

¼
(

t�1
2 ½expð�r0t2Þ � expð�2r0t2Þ� ½t2 6¼ 0�

r0 ½t2 ¼ 0� ; ð23Þ

r0 ¼ r=ð1þ rt1Þ; ð24Þ

t1 ¼ � � 3t2=2; ð25Þ

t2 ¼ ð6�=13Þ1=2�; ð26Þ
where � is a parameter corresponding to the degree of dead-

time extension, similarly to the exact intermediate model in

the preceding section.

This model is identical to the non-extended model for � = 0,

that is,

f ðr; �; 0Þ � fnon�exðr; �Þ; ð27Þ
and also approximates the extended model for � = 1 reason-

ably well,

f ðr; �; 1Þ ’ fexðr; �Þ: ð28Þ
The maximum deviation of f ðr; �; 1Þ from fexðr; �Þ in the range

0 � r � ��1 is 0.0003 relative to the value of fexðr; �Þ at

r ¼ ��1, which is smaller than the statistical errors predicted

for data counts up to 107.

The values of the derivatives of the functions f ðr; �; �Þ,
fnon�exðr; �Þ and fexðr; �Þ at the origin are listed in Table 1.

The inverse function of the model function f ðx; �; �Þ is given

by the equations

r ¼ f�1ðn; �; �Þ ¼ r0=ð1� r0t1Þ; ð29Þ

r0 ¼
(
�t�1

2 lnf½1þ ð1� 4nt2Þ1=2�=2g ½t2 6¼ 0�
n ½t2 ¼ 0� ; ð30Þ

where t1 and t2 are related to � and � by equations (25) and

(26).

3. Estimation of parameters

3.1. Experimental

The experimental procedures referred to as Chipman’s

(1969) foil method were applied to estimate the parameters in

the counting loss models. The 2� scan intensity profiles for the

003 reflection of mica powder (NIST, SRM675) were
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Table 1
Values of the first four derivatives of the counting loss model functions at
the origin.

Order f(x; �, 0) = fnon�ex(x; �) f(x; �, 1) fex(x; �)

1 1 1 1
2 �2� �2� �2�
3 6�2 3�2 3�2

4 �24�3 �3.973�3 �4�3
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measured with a high-resolution powder diffractometer

(Toraya et al., 1996) on beamline BL4B2 at the Photon Factory

(PF) in Tsukuba. The 2� angle was measured with an encoder

(Heidenhain RON-806) at each measurement step. The

specimen was rotated about its surface normal during the

measurements. One measurement was made with an alumi-

nium foil absorber inserted in the beam path, and the second

measurement was made without the foil. A high-voltage/PHA

unit (Rigaku 5320 C1) was used to count the signal pulses. The

baseline and width of the window of the PHA were set to 0.5

and 2, respectively, relative to the first peak position in the

PHA differential curve. Changes in intensity caused by the

decay of the ring current were calibrated by monitoring the

intensity of the incident beam.

3.2. Analytical method

3.2.1. Preliminary analysis. Since the 2� angles of the two

measurements did not strictly coincide, intensities expected

for the common 2� angles with equal intervals were calculated

by sampling intensity values from the curves drawn by a cubic

spline interpolation between the observed data points. The

first intensity data, fy1jg, were calculated from the data f2�1jg
and fY1jg measured with the foil absorber, and the second set

of data, fy2jg, were calculated from the data f2�2jg and fY2jg
measured without the foil.

Fig. 2 shows the observed intensity profiles for the first

(attenuated) and second (unattenuated) measurements. Both

data were measured at 0.001� steps in 2�. The reduction in the

observed intensities near the peak top in the second

measurement clearly shows that it is heavily affected by losses

in the counting method.

The interpolated second set of intensity data fy2jg are

plotted versus the interpolated first intensity data fy1jg in

Fig. 3. Firstly, the dependence was modelled by the extended

dead-time model, applying the fitting function

y01j ¼ fex½a�1f�1
ex ðy1j; �Þ; ��; ð31Þ

where a is the transmittance of the foil.

The transmittance a and dead-time parameter � were

determined by applying a nonlinear least-squares optimization

to the observed dependence of fy2jg on fy1jg, to minimize the

quantity

�2 ¼P
j

ðy2j � y01jÞ2=�2
j ; ð32Þ

where �j is the estimated error for each data point. The errors

were estimated by assuming counting statistics for the second

intensity data set fy2jg, given by

�2
j ¼ ðy2j=T2jÞ1=2; ð33Þ

where T2j is the measurement time for the second data set at

each step, for the preliminary evaluation of the parameters.

The inverse function f�1
ex ðx; �Þ was calculated by a Newton

method, with the initial guess of the solution as x=ð1� x�Þ,
ten-times iteration and no criteria for convergence.

The result of the preliminary fitting to the data with the

extended dead-time model is also shown in Fig. 3. Systematic

deviation showing a hysteresis-like behaviour is found in the

difference plot, which suggests a slight constant shift of the

abscissa between the two measurements.

3.2.2. Correction of shift. In order to evaluate the shift of

the abscissa precisely, the correlation between the prelimina-

rily modified values for the first data y01j, which were calculated

with the optimized values of a and �, and the second intensity

data set y2j was examined. The correlation was calculated by

ck ¼
Pn�k�1

j¼0

y01jy2;jþk; ð34Þ

where n is the total number of data points. A periodicity of

ckþn ¼ ck ð35Þ

is assumed.

Fig. 4 shows the correlation curve and results of fitting with

a Lorentzian function:

fLorð�2�Þ ¼ bþ ðS=�wÞ½1þ ð�2� ��2�0Þ2=w2��1; ð36Þ
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Figure 2
The peak profiles of the mica 003 reflection measured at the Photon
Factory. The profile measured with a foil absorber is shown as a thin line,
and that measured without the foil is shown as a thick line.

Figure 3
The result of a preliminary fitting with the extended dead-time model to
the data shown in Fig. 2. The experimental data are shown as crosses and
the optimized curve is shown as a solid line in the lower part of the figure.
The difference is shown as a thick line and the estimated errors (	�) are
shown as thin lines in the upper part.
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where b is the background, S is the intensity, �2�0 is the peak

shift and w is the half width at half-maximum of the Lorent-

zian function.

The optimized value for the peak shift is �2�0 = �0.00025�,
which means that the second set of data are shifted by 0.00025�

to the lower-angle side as compared with the first data set.

The shift-corrected intensity data for the second measure-

ment, fy02jg, were then created by applying a cubic spline

interpolation to the data set shifted by �2�0, f2�2j þ�2�0g and

fY2jg.
3.2.3. Final optimization. Final optimization was conducted

to minimize the quantity

�2 ¼P
j

ðy02j � y01jÞ2=ð�0jÞ2; ð37Þ

where �0j is the estimated error for each data point. The

statistical errors in the first measurement are also taken into

account in the final optimization, applying the equation

�0j ¼ ½ y02jðT�1
2j þ T�1

1j y01j=y1jÞ�1=2; ð38Þ
where T1j and T2j are the measurement time at each step for

the first and second data set, respectively.

Fig. 5 shows the result of the final fitting analysis with the

extended dead-time model, where the shift correction of

�0.00025� is applied to the data shown in Fig. 2. The statistical

errors corresponding to 	1 standard deviation are shown as

thin lines in the upper part of Fig. 5. The difference plot,

shown as thick lines in the upper part of Fig. 5, suggests slight

systematic deviation of the observed dependence from that

predicted by the extended dead-time model. It should be

noted that such slight systematic deviation could not be

detected without the shift correction of 0.00025�, which is

much smaller than the measurement step of 0.001�.
3.2.4. Comparison of models for counting losses. The non-

extended dead-time model, the PHA-windowing model in

x2.1, the intermediate model in x2.2 and the approximate

intermediate model in x2.3 were also applied to the data

analysed in the preceding section. The results for the four

models are shown in Figs. 6–9 and are listed in Table 2.

The non-extended dead-time model poorly fits the observed

dependence (Fig. 6). However, the tendency of the systematic

deviation is found to be in the opposite direction to that of the

extended dead-time model shown in Fig. 5. This result suggests

that the observed dependence has a character intermediate

between the non-extended and extended dead-time models.

When the allowed pile-up level L is treated as an adjustable

parameter, the PHA-windowing model can fit the observed

dependence reasonably well (Fig. 7). There remain no signif-

icant systematic deviations in the difference plot of Fig. 7.

However, the optimized value L = 0.900 (11) is inconsistent

with the PHA settings applied for the measurement, where the

baseline and width of the window are set to 0.5 and 2 relative

to the first peak position in the PHA differential curve. There

seems no theoretical evidence to suggest any advantage of the

simple PHA-windowing model for counting losses. The opti-

mized value of L less than 1 means that the deviation from the

extended dead-time model (L = 1) is in the direction of the

non-extended model, as discussed in x2.1.

The intermediate model gives slightly better fits (smaller �2)

to the observed dependence, as shown in Fig. 8. The optimized

value � = 0.872 (15) shows that the experimental dependence

is mainly reproduced by the extended dead-time model

(� = 1), but the contribution of the non-extended dead-time

model (� = 0) is not negligible.

Application of the approximate intermediate model,

described in x2.3, gives no difference from the exact inter-

mediate model within the experimental errors (Fig. 9), except

that the codings are easier and the computation time needed is
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Figure 4
Correlation curve to evaluate the slight shift. The experimental
correlations are shown as dots and the optimized curve is shown as a
thin solid line in the lower part. The upper part shows the difference plot.

Table 2
Results of optimization for different counting loss models.

a is the transmittance of the foil, � is the dead-time, L is the allowed pile-up
level and � is the degree of dead-time extension.

Model a � (�s) � or L �2

Extended 0.03807 (3) 0.803 (1) 260.8
Non-extended 0.03639 (3) 1.196 (2) 3548.4
PHA-windowing 0.03768 (6) 0.364 (4) L = 0.900 (11) 194.2
Intermediate 0.03784 (4) 0.842 (5) � = 0.872 (15) 187.8
Approximate 0.03784 (4) 0.842 (5) � = 0.872 (15) 187.8

Figure 5
The result of the final optimization with the extended dead-time model
using the data shown in Fig. 2. Data are represented as described in the
caption of Fig. 3.
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Figure 7
The result of the final optimization with the PHA-windowing model using
the data shown in Fig. 2. Data are represented as described in the caption
of Fig. 3.

Figure 9
The result of the final fitting with the approximation for the intermediate
model using the data shown in Fig. 2. Data are represented as described in
the caption of Fig. 3.

Figure 8
The result of the final optimization with the intermediate model using the
data shown in Fig. 2. Data are represented as described in the caption of
Fig. 3.

Figure 6
The result of the final optimization with the non-extended dead-time
model using the data shown in Fig. 2. Data are represented as described in
the caption of Fig. 3.

shorter in the approximate model, where no iterative calcu-

lation is needed for evaluation of the inverse function. It

should be noted that the efficiency in the evaluation of the

inverse function will become more significant when the model

is applied to correct the counting losses in experimental

powder X-ray diffraction intensity data with many data points.

4. Conclusion

Non-extended and extended dead-time models, a PHA-

windowing model, an intermediate model, and an approx-

imate intermediate model for counting losses have been

applied to high-precision analyses of experimental diffraction

peak intensity profiles measured by a foil method. The

deviations of the experimental dependence from the conve-

nient approximate model are within the experimental errors.

Both the optimization of the parameters and corrections for

counting losses can easily be achieved by applying the

approximate model, because the exact solution of its inverse

function is expressed by a combination of elementary func-

tions.

APPENDIX A
Derivation of a counting loss model for PHA
windowing

It is assumed that the input pulses have a common rectangular

shape with width �w. The Poisson distribution for the number

of pulses N in a fixed time T is given by

fPðN;TÞ ¼ ðrTÞN expð�rTÞ=N!; ð39Þ
where r is the average count rate.

When the PHA is set to allow only single-height

pulses (L = 1) and to reject any pile-up peaks, an input

pulse will be detected only when the interval from the last

pulse and the interval to the next pulse are both longer

than the pulse width �w. The probability that each pulse is

detected is given by expð�2r�wÞ, because the probability that

no pulse occurs within the period �w is given by

fPð0; �wÞ ¼ expð�r�wÞ. The output count rate is then expected

to be r expð�2r�wÞ.
For the case of L = 2, the following logic is applied. (i) A

pulse is temporarily detected when the interval from the last

pulse is longer than �w. (ii) The temporarily detected pulse is

cancelled when two or more pulses occur within the following
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period �w, or fixed otherwise. Then the probability that each

pulse is detected is given by

fPð0; �wÞ½fPð0; �wÞ þ fPð1; �wÞ� ¼ ð1þ r�wÞ expð�2r�wÞ; ð40Þ
which predicts the output count rate to be

n ¼ rð1þ r�wÞ expð�2r�wÞ:
Similarly, the probability that each pulse is detected for the

general case of the allowed pile-up levels L is given by

fPð0; �wÞ
PL�1

l¼0

fPðl; �wÞ ¼ expð�2r�wÞ
PL�1

l¼0

ðr�wÞl=l!; ð41Þ

and the output count rate is given by

n ¼ r expð�2r�wÞ
PL�1

l¼0

ðr�wÞl=l!; ð42Þ

where the level L is normalized to the single-pulse-height

level.

APPENDIX B
Scheme for constructing an approximate formula

Let us examine the formula

n ¼ f0ðr; tÞ ¼ t�1½expð�rtÞ � expð�2rtÞ�; ð43Þ
which is equivalent to the quadratic equation for

X ¼ expð�rtÞ,
X2 � X þ nt ¼ 0: ð44Þ

The solution is immediately given by

X ¼ expð�rtÞ ¼ ½1þ ð1� 4ntÞ1=2�=2; ð45Þ

r ¼ �t�1 lnf½1þ ð1� 4ntÞ1=2�=2g: ð46Þ
Since the first, second and third derivatives of the formula at

the origin are given by

ðdn=drÞ0 ¼ 1; ð47Þ

ðd2n=dr2Þ0 ¼ �3t; ð48Þ

ðd3n=dr3Þ0 ¼ 7t2; ð49Þ
the formula becomes comparable to the non-extended and

extended dead-time models for t ¼ 2�=3, which gives

ðd2n=dr2Þ0 ¼ �2�; ð50Þ

ðd3n=dr3Þ0 ¼ 28�2=9: ð51Þ

It is suggested that the formula is close to the extended dead-

time model but slightly deviated, to have a weak non-extended

character, because the value 28�2=9 is close to but slightly

greater than the third derivative of the extended model

3�2, while that of the non-extended dead-time model is given

by 6�2.

It is also suggested that the extended dead-time model can

be approximated by mixing the formulae of the non-extended

dead-time model, if a negative value of the dead-time para-

meter for the non-extended component is allowed. We assume

a mixed function as

f ðr; t1; t2Þ ¼ f0½fnon�exðr; t1Þ; t2�; ð52Þ

f0ðr; t2Þ ¼ t�1
2 ½expð�rt2Þ � expð�2rt2Þ�: ð53Þ

The first, second and third derivatives of the mixed function at

the origin are given by

f 0ð0; t1; t2Þ ¼ 1; ð54Þ

f 00ð0; t1; t2Þ ¼ �2t1 � 3t2; ð55Þ

f 000ð0; t1; t2Þ ¼ 7t2
2 þ 18t1t2 þ 6t2

1: ð56Þ
Substituting the solution of f 00ð0; t1; t2Þ ¼ �2� for t1 in equa-

tion (56) gives

f 000ð0; t1; t2Þ ¼ 6�2 � 13t2
2=2: ð57Þ

The first, second and third derivatives of the mixed function at

the origin then become identical to those of the extended

dead-time model for t2 ¼ ð6=13Þ1=2�. When we introduce

another parameter, �, to satisfy the relation

t2 ¼ ð6�=13Þ1=2�;

the third derivative of the mixed function becomes linearly

dependent on �.
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