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A Fourier method to connect segmented intensity data measured with a

multiple-detector system (MDS) for powder diffractometry has been developed.

Differences in sensitivity, slight shifts in peak positions and asymmetric

instrumental broadening for different detectors are simultaneously adjusted

by a Fourier-based deconvolution/convolution method. The Fourier transform

of the adjustment function is evaluated as the ratio of the Fourier transforms of

the intensity data sets in the overlapped region measured with the adjacent

detectors. Even and odd polynomial functions with maximum order of 10 are

separately fitted to the real and imaginary parts of the experimentally evaluated

Fourier-transformed adjustment by a least-squares method applying an

appropriate weighting for the Fourier-transformed data. The complex of the

optimized polynomials is used to adjust the data measured with a detector in

order to connect them with the data measured with an adjacent detector. The

method is applied to connect the powder diffraction data of ZnO powder

measured with the MDS on beamline BL4B2 at the Photon Factory in Tsukuba.

Slight differences in line width, asymmetry and sharpness detected in the

observed diffraction peak profiles measured with the different detectors have

successfully been removed by the Fourier-based adjustment procedures.

1. Introduction

A multiple-detector system (MDS) for powder X-ray

diffraction measurement has been utilized on beamline BL4B2

at the Photon Factory in Tsukuba (Toraya et al., 1996). High-

resolution diffraction intensity data in the range 0–155� with

typical step intervals of 0.004� or 0.005� in 2� can be collected

within about 10 h, which is made possible by the enhanced

efficiency of data acquisition owing to the multiplication of the

detection system. When the 2� axis of the MDS is scanned

over an angular range of 0–30�, six sets of detection systems,

attached radially at intervals of 25� to the 2� axis, simulta-

neously provide diffraction intensity data in the ranges 0–30�,
25–55�, 50–80�, 75–105�, 100–130� and 125–155� in 2�. A

similar design of a powder diffractometer for beamline B2 at

HASYLAB/DESY in Hamburg has been reported by Kaps et

al. (1999). Multiple-detector powder diffractometers based on

a single-axis multiple-analyser design (Hodeau et al., 1998) are

also in operation at ESRF in Grenoble, and other facilities.

The diffraction intensity profiles measured with different

detectors do not exactly coincide with one another, because

the difference in intrinsic sensitivity of the detectors, the

relative intensity of stray light, and small deviations of the

analyser tilt angle from the strictly aligned condition (Ida et

al., 2001) can all affect the observed diffraction intensity

profile. Slightly different characteristics of the detectors

should be taken into account when treating the segmented

intensity data measured with the MDS, especially for the

application to the detailed analysis of peak profiles aimed at

the evaluation of microstructure parameters of polycrystalline

samples.

In principle, the different instrumental functions of detec-

tors can be explicitly taken into account by applying convo-

luted peak profile functions, as has been suggested in our

previous report (Ida et al., 2001). However, it would be more

convenient if the slight deviation in the instrumental function

of a detector could be adjusted and a series of combined data

were made available by simply merging the segments of the

adjusted intensity data.

Toraya et al. (1996) have suggested that small disagreements

in peak position and intensity for the same reflections

observed with the two adjacent detectors can be adjusted by a

least-squares method applied to the data in the overlapping

regions. Background, sensitivity and shift of the angle can be

adjusted by linear transformations for the data of 2� and

intensity.

However, the instrumental peak broadenings caused by

slight misalignment of the analyser crystals are also likely to

vary for different detector systems (Ida et al., 2001), which

cannot be adjusted by linear transformations of data.

In this paper, a new method is proposed for adjusting slight

deviations of the instrumental functions to connect partially
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overlapped segmented intensity data measured with a

multiple-detector system. The method is applied to the

diffraction intensity data of a standard ZnO powder sample

(NIST SRM674) measured with the MDS at the Photon

Factory, and the validity of the method is examined by detailed

analyses of the observed and adjusted diffraction peak

profiles.

2. Method

2.1. Concept of Fourier-based adjustment

It is assumed that two segments of intensity profiles, y1 =

g1(x) over the range x11� x� x12 and y2 = g2(x) over the range

x21 � x � x22, are measured with detectors with different

instrumental functions w1(x) and w2(x), respectively, where

the overlapped range is given by x21 � x � x12. The intrinsic

(instrument-free) intensity profile is assumed to be y = f(x).

The convolution relations are expressed by the following

equations:

g1ðxÞ ¼ f ðxÞ � w1ðxÞ ðx11 � x � x12Þ ð1Þ
and

g2ðxÞ ¼ f ðxÞ � w2ðxÞ ðx21 � x � x22Þ; ð2Þ
where f ðxÞ � wðxÞ is the convolution of f(x) and w(x), defined

by

f ðxÞ � wðxÞ � R1
�1

f ðx� yÞwðyÞ dy: ð3Þ

The purpose of the method is to modify the second set of

intensity data y2 = g2(x), as if they were measured with a

detector with the same instrumental function as the first

detector, w1(x). It can be achieved, in principle, by deconvo-

lution with w2(x) followed by convolution of w1(x).

Even if the exact formulae of the instrumental functions

w1(x) and w2(x) is unknown, an empirical deconvolution/

convolution method can be applied by the following proce-

dures, similarly to the method of Stokes (1948).

If the widths of the instrumental functions are sufficiently

narrower than the overlapped range, the Fourier transform of

the instrumental adjustment function W1=2ð�Þ can be related to

the experimental data by the following equation:

W1=2ð�Þ ¼ Go1ð�Þ=Go2ð�Þ ð4Þ
where Go1ð�Þ and Go2ð�Þ are the Fourier transforms of the

intensity data within the overlapped region, i.e.

Go1ð�Þ ¼
Rx12

x21

g1ðxÞ expð2�i�xÞ dx ð5Þ

and

Go2ð�Þ ¼
Rx12

x21

g2ðxÞ expð2�i�xÞ dx: ð6Þ

The intensity data y2 should be adjusted to y20 = g20 ðxÞ, by the

following equation:

g20 ðxÞ ¼
R1
�1

W1=2ð�ÞG2ð�Þ expð�2�i�xÞ d�; ð7Þ

where G2ð�Þ is calculated for the whole region measured with

the second detector by

G2ð�Þ ¼
Rx22

x21

g2ðxÞ expð2�i�xÞ dx: ð8Þ

In a discrete formula, the adjusted data fðy20 Þjg are calculated

from the source intensity data fðy2Þjg by the following equa-

tion:

ðy20 Þj ¼ N�1
P

k

ðW1=2ÞkðG2Þk expð�2�ikj=NÞ; ð9Þ

where fðW1=2Þkg is the discrete Fourier-transformed adjust-

ment function, and fðG2Þkg is the discrete Fourier transform of

the second intensity data set given by

ðG2Þk ¼
P

j

ðy2Þj expð2�ikj=NÞ: ð10Þ

The discrete Fourier-transformed adjustment fðW1=2Þkg to be

applied to the N-point segmented data fðy2Þjg is evaluated by a

smoothing interpolation from the experimental values

fðWo;1=2Þk0 g evaluated from the overlapping n-point intensity

data fðy1Þj0 g and fðy2Þj0 g. Details about the methods for

smoothing interpolation will be described in the following

sections. The discrete formula of the adjustment function

fðW1=2Þkg for the whole data segment is connected with the

experimental evaluation of the adjustment fðWo;1=2Þk0 g through

the continuous formula W1=2ð�Þ by the following equations:

ðW1=2Þk ¼ W1=2ðk=N�xÞ; ð11Þ
and

ðWo;1=2Þk0 ’ W1=2ðk0=n�xÞ; ð12Þ
where �x is the step interval of the source data. The experi-

mental evaluation of fðWo;1=2Þk0 g is given by

ðWo;1=2Þk0 ¼ ðGo1Þk0=ðGo2Þk0 ; ð13Þ
where

ðGo1Þk0 ¼
P

j0
ðy1Þj0 expð2�ik0j0=nÞ; ð14Þ

and

ðG0o2Þk0 ¼
P

j0
ðy2Þj0 expð2�ik0j0=nÞ: ð15Þ

2.2. Preliminary corrections

It is most unlikely that the experimentally evaluated

adjustment function fðWo;1=2Þk0 g would be smooth enough,

because it can be heavily affected by statistical errors included

in the source data. Smoothing of the adjustment function

W1=2ð�Þ is necessary to avoid increases of noise in the adjusted

data through the Fourier treatment.

We can imagine that the Fourier-transformed adjustment

function could be fitted by a polynomial of � when the back-

ground intensity is proportional to the peak intensity and the
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peak shift of the instrumental function w2(x) from w1(x) is

sufficiently small. For example, the adjustment function

W1=2ð�Þ will be constant if the instrumental function w2(x) is

exactly proportional to w1(x), and it will be only slightly

deviated from a constant function when the difference

between the functions w2(x) and w1(x) is small in shape.

In contrast, it would be difficult to model a large shift in the

peak position or additional intensity background by a poly-

nomial fit applied to the Fourier-transformed adjustment

function, because the constant shift (�) corresponds to multi-

plication of a vibrating function expð2�i��Þ, and the additional

background corresponds to addition of a term multiplied by

the Dirac delta function in the Fourier form, both of which

cannot be fitted with low-order polynomials of �.
Therefore, it is preferred that coarse corrections of data for

shift and background are conducted before the deconvolution/

convolution treatment proposed in the preceding section. Fine

corrections for the residual background and shift after the

preliminary corrections can be included in the Fourier-based

adjustment function W1=2ð�Þ, if polynomials of sufficiently high

order are used.

2.2.1. Preliminary correction of shift by maximizing

correlation. Evaluation of shift on the abscissa is achieved

by finding the maximum of the mutual correlation function of

the overlapping data, defined by

corrðxÞ ¼ Rx12��

x21þ�
g1ðzÞg2ðzþ xÞ dz; ð16Þ

with

�� < x<� ð17Þ
where � is the margin to keep the variable of the integrand

within the defined data range. For example, � can be set to 0.1�,
and corrðxÞ should be evaluated only for the range �0.1 < x <

0.1�, when the possible angular shift is known to be smaller

than 0.1�, as is expected for the MDS on BL4B2 at the Photon

Factory.

The discrete formula for the correlation fClg is given by

Cl ¼
P

j0
y1j0y2;j0þl; ð18Þ

where the summation is calculated over the range defined by

x21 þ � < xj0 < x12 � � ð19Þ
for the abscissa xj0 at point j0.

The following formula for a Lorentzian model function can

be used to determine the peak position of the correlation:

pðx; b; S; x0;wÞ ¼ bþ SfLorðx� x0; wÞ ð20Þ
and

fLorðx; wÞ ¼ ð�wÞ�1ð1þ x2=w2Þ�1; ð21Þ
where b is the background, S the intensity, x0 the peak position

and w the half-width at half-maximum of the peak.

The shift-corrected intensity data fðy2sÞjg are created by

sampling intensity values at the points shifted by x0 from the

intensity curve calculated by a cubic spline interpolation for

fðy2Þjg.
2.2.2. Correction of additional background. The difference

of background contributions in the two sets of intensity data

fðy1Þjg and fðy2sÞjg can be estimated by evaluating the inter-

section of the experimental dependence of fðy2sÞj0 g on fðy1Þj0 g
at ðy1Þj0 ! 0 within the overlapping region. It can be achieved

by a simple fitting method with a linear function, which

corresponds to the approximation

ðy2sÞj0 ’ Bþ Aðy1Þj0 ; ð22Þ
where A and B are the parameters to be optimized by a least-

squares method. The different contributions of the additional

part of background are simply corrected by subtracting the

optimized value of B from the shift-corrected intensity data

fðy2sÞjg. The intensity data after the preliminary corrections of

shift and background fðy2pÞjg are then given by

ðy2pÞj ¼ ðy2sÞj � B: ð23Þ

2.3. Model for Fourier adjustment function

In general, the characteristic features of the instrumental

functions w1(x) and w2(x) are mainly included in low-� data in

the Fourier transformed form, while high-� data are heavily

affected by statistical uncertainties.

Therefore, appropriate weighting of the data is the key for

modelling the Fourier adjustment function W1=2ð�Þ by an

optimization method, thereby attaching greater importance to

the low-� data than high-� data.

2.3.1. Weighting scheme. It is assumed that the errors in

the source intensity data, fðy1Þj0 g and fðy2pÞj0 g, are independent

and known to be fð"1Þj0 g and fð"2pÞj0 g, respectively. Neglecting

the mutual correlations in the Fourier transforms of the

intensity data, the variances of the Fourier transforms are

approximated by

h jðGo1Þk0 � h ðGo1Þk0 ij2i ’
P

j0
ð"1Þ2j0 ð24Þ

and

h jðGo2Þk0 � h ðGo2Þk0 ij2i ’
P

j0
ð"2pÞ2j0 : ð25Þ

Then, the variance of the Fourier adjustment function

fðWo;1=2Þk0 g is approximately given by

�2
k0 ¼ h jðWo;1=2Þk0 � h ðWo;1=2Þk0 ij2i
’ h jðGo2Þk0 j2i�1

P
j0
ð"1Þ2j0

þ h jðGo1Þk0 j2ih jðGo2Þk0 j2i�2
P

j0
ð"2pÞ2j0 ; ð26Þ

on the assumption that the errors are small as compared with

the absolute values of the Fourier transforms.

It should be noted that the variances estimated by equation

(26) are roughly proportional to the inverse squared absolute

values of the Fourier transforms, ðGo1Þk0 and ðGo2Þk0 . This

means that the ordinary weighting scheme for least-squares
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optimization, multiplying each term by ��2
k0 , certainly attaches

heavier weights to the low-� data.

2.3.2. Polynomial fit. The real and imaginary parts of the

Fourier adjustment are separately fitted with polynomials of

� = k0=n�x, minimizing

SR ¼
P
k0
��2

k0 ReðWo;1=2Þk0 � fpoly;Rðk0=n�xÞ� �2 ð27Þ

and

SI ¼
P
k0
��2

k0 ImðWo;1=2Þk0 � fpoly;Iðk0=n�xÞ� �2
; ð28Þ

where fpoly;Rð�Þ and fpoly;Ið�Þ are even and odd polynomials of �,
respectively.

The model for the Fourier adjustment function is given by

W1=2ð�Þ ¼ fpoly;Rð�Þ þ ifpoly;Ið�Þ: ð29Þ

2.4. Estimation of errors

Even though it is difficult to evaluate the exact values of

errors in the data modified by a Fourier-based treatment, a

method for evaluating a rough indication of the errors from

the source error data fð"2Þjg is available (Ida & Toraya, 2002).

Note that the data fðy20 Þjg are calculated by the inverse Fourier

transform of the product of the Fourier transform of the

source data fðy2Þjg and the Fourier adjustment fðW1=2Þkg.
The following equations are applied to evaluate the errors

fð"20 Þjg in the data fðy20 Þjg, from the given data fð"2Þjg and

fðW1=2Þkg:
ð"20 Þ2j ¼ N�1

P
k

ðZ2
2ÞkðW2

1=2Þk expð�2�ikj=NÞ; ð30Þ

ðZ2
2Þk ¼

P
j

ð"2Þ2j expð2�ikj=NÞ; ð31Þ

ðW2
1=2Þk ¼

P
j

ðw1=2Þ2j expð2�ikj=NÞ; ð32Þ

ðw1=2Þj ¼ N�1
P

k

ðW1=2Þk expð�2�ikj=NÞ: ð33Þ

3. Application to diffraction data of ZnO powder

3.1. Experimental

Standard ZnO powder (NIST SRM674) was filled into the

hollow of the flat-plate specimen holder of diameter 30 mm.

The specimen was rotated about its surface normal at one

revolution s�1 during the measurement.

The powder diffraction data were collected with the MDS

on the beamline BL4B2 at the Photon Factory in Tsukuba

(Toraya et al., 1996). Six detectors labelled No. 1 to No. 6 from

lower to higher angles, are attached at intervals of 25� to the

2� axis. Each of the detectors is composed of Soller slits with

divergence FWHM (full width at half-maximum) of 1.0�, a

Ge(111) crystal analyser, scintillation counter, pre-amplifier

and pulse-height analyser (PHA; Rigaku 5320C1). The inci-

dent beam, monochromated at � = 1.206 Å, was restricted to

1.0 mm in height and 10 mm in width by applying the entrance

slits.

The angles of six crystal analysers were adjusted to maxi-

mize the signal from the attenuated direct beam, repeatedly

changing the 2� angle at the interval of 25�, and carefully

monitoring the values displayed by an encoder system

(Heidenhain, RON-806) attached to the 2� axis.

The glancing angle of the incident beam at the sample face

was set to 12.38�. The diffractometer was operated in 2� scan

mode at a step interval of 0.005� with an integration time of

4 s. The 2� axis was scanned over �5.84 to 29.98�. Six

segmented intensity data sets ranging �5.84 to 29.98�, 19.16 to

54.98�, 44.16 to 79.98�, 69.16 to 104.98�, 94.16 to 129.98� and

119.16 to 154.98� were collected with the No. 1 to No. 6

detectors, respectively.

The decay of the incident beam was monitored by

measuring the intensity scattered by aluminium foil inserted in

the incident beam path with another scintillation counter. The

observed monitor intensity during the measurement is shown

in Fig. 1. The dependence of the monitor intensity was fitted

by

I ¼ I1 þ ðI0 � I1Þ expð�t=TÞ; ð34Þ

where t is the passed time, T the lifetime of the beam, and I0

and I1 are the intensities expected for t = 0 and t!1,

respectively. The fitted values were used for correction of the

change in the incident-beam intensity, because the deviations

from the fit are almost fully assigned to the random errors

predicted by counting statistics, as can be seen in Fig. 1.

3.2. Correction of counting losses

The counting losses caused by the finite response time of

detection systems were modelled by an intermediately

extended dead-time model (Ida & Iwata, 2005) given by
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Figure 1
Intensity of the source X-ray measured with a monitor counter. The lower
part shows the observed intensity (grey line) and exponential fit (black
line). The upper part shows the errors predicted by counting statistics
(black line) and the residuals of the fitting (grey line).
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n ¼ f ðr; �; �Þ

¼ t�1
2 ½expð�r0t2Þ � expð�2r0t2Þ� for t2 6¼ 0;

r0 for t2 ¼ 0;

�
ð35Þ

with

r0 ¼ r=ð1þ rt1Þ; ð36Þ

t1 ¼ � � 3t2=2; ð37Þ
and

t2 ¼ ð6�=13Þ1=2�; ð38Þ
where n is the observed count rate, r is the true count rate, � is

the dead-time, and � is the degree of dead-time extension. The

parameters for the counting losses experimentally determined

by an improved foil method (Ida & Iwata, 2005) are

summarized in Table 1. The errors that may be caused by the

uncertainty of the assumed parameters were also taken into

account in the analysis, in addition to the statistical uncertainty

predicted by counting statistics.

The correction function as the inverse function of the above

throughput function f ðr; �; �Þ is given by

r ¼ f�1ðn; �; �Þ ¼ r0=ð1� r0t1Þ ð39Þ
and

r0 ¼ �t�1
2 lnf½1þ ð1� 4nt2Þ1=2�=2g for t2 6¼ 0;

n for t2 ¼ 0;

�
ð40Þ

where t1 and t2 are related to � and � by equations (37) and

(38).

3.3. Adjustment of segmented data

The experimental diffraction intensity profiles measured

with the No. 1 to No. 6 detectors are shown in Fig. 2(a).

The segmented data measured with the No. 2 to No. 6

detectors are modified by the following procedures. First, the

intensities in the second segment fðy2Þjg are modified to fðy20 Þjg
in order to adjust them to the intensities in the first segment

fðy1Þjg. Next, the intensities in the third segment fðy3Þjg are

modified to fðy30 Þjg to adjust them to the modified intensity

data fðy20 Þjg instead of the raw data fðy2Þjg, for the purpose of

creating a series of combined data by merging all the adjusted

data segments. The fourth, fifth and sixth data segments are

treated similarly.

3.3.1. Preliminary corrections for data segments. The

correlations between the adjacent data sets in the overlapping

range are analysed by the method described in x2.2.1. Fig. 3

shows the observed correlations and the results of fitting with

a Lorentzian function.

Slight shifts of 0.0036, �0.0042, 0.0092, 0.0101 and 0.0101�

have been found for the data measured with the No. 2 to No. 6

detectors, respectively. The shifts may have been caused by the

errors in the initial adjustment of the angles of the analyser

crystals.

The corrections for background determined by a least-

squares optimization were B = 79.3, 26.9, �50.9, �27.4 and

52.9 counts s�1 for the No. 2 to No. 6 detectors, respectively.

The linear fitting also gives the preliminary correction values

for the sensitivities of the No. 2 to No. 6 detectors, estimated at

A = 0.695, 0.802, 0.913, 0.840 and 0.660.

3.3.2. Fourier adjustment functions. Fig. 4 shows the

experimental evaluations of the Fourier adjustment functions
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Table 1
The assumed parameters for counting losses.

� is the dead-time and � is the degree of dead-time extension.

Detector � (ms) �

No. 1 0.842 (5) 0.872 (15)
No. 2 1.185 (10) 0.68 (2)
No. 3 1.524 (8) 0.578 (9)
No. 4 1.188 (6) 0.682 (10)
No. 5 1.088 (6) 0.750 (13)
No. 6 1.327 (8) 0.639 (13)
Monitor 0.80 (12) 1 (fixed)

Figure 2
Powder diffraction intensity profiles of ZnO measured with the MDS on BL4B2 at the Photon Factory at the wavelength of 1.206 Å. (a) The raw, (b)
adjusted and (c) combined intensities are shown. The data measured with No. 1, No. 3 and No. 5 detectors are shown as black lines, and the data
measured with No. 2, No. 4 and No. 6 detectors are shown as grey lines in (a) and (b). The diffraction peak positions predicted for wurtzite ZnO are
shown as vertical lines in (d).
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Figure 4
Fourier adjustments for the intensity data measured with the (a) No. 2, (b) No. 3, (c) No. 4, (d) No. 5 and (e) No. 6 detectors. The upper and lower parts of
each panel show the real and imaginary parts of the Fourier correction functions. The experimental values are shown by grey lines, and the optimized
polynomials are shown by black lines.

Figure 3
Correlations of the intensity data measured with the adjacent detectors: (a) No. 1 and No. 2, (b) No. 20 and No. 3, (c) No. 30 and No. 4, (d) No. 40 and No. 5,
(e) No. 50 and No. 6. No. 20 means the adjusted data measured with the No. 2 detector, and so on. The lower part of each panel shows the experimental
correlations (crosses) and the optimized Lorentzian profile (solid line). The optimized peak positions are marked by vertical arrows. The upper part
shows the difference between the experimental curve and the optimized Lorentzian.
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as the ratios of the Fourier-transformed overlapping intensity

data and the optimized polynomials described in x2.3. The

polynomials with maximum order of 10 are used for the fitting,

which are given by

fpoly;Rð�Þ ¼
P5

j¼0

aj�
2j; ð41Þ

and

fpoly;Ið�Þ ¼
P4

j¼0

bj�
2jþ1; ð42Þ

where fajg and fbjg are the fitting parameters.

Although the experimental evaluations of the Fourier

adjustments are heavily affected by noisy structure, especially

in the high-� regions, the behaviours near the origin are well

reproduced by the optimized polynomials of �.
The sensitivities of the No. 2 to No. 6 detectors evaluated as

the reciprocals of the Fourier adjustments at the origin (1=a0)

are 0.697, 0.807, 0.914, 0.841 and 0.661 relative to that of the

first detector. The values are consistent with the preliminary

values evaluated in the preceding section.

The decrease in the real parts of the Fourier corrections on

increasing � suggests that the data measured with the No. 1

detector are more broadened than those measured with other

detectors, which may be caused by slightly lower resolution of

the No. 1 detector.

3.3.3. Results of Fourier-based adjustment. The results of

the Fourier-based adjustment are shown in Fig. 2(b). The

angular dependence of the difference between the instru-

mental functions is neglected, because the observed difference

is dominantly caused by slight misalignment of the analyser

crystals, which does not directly affect the angular-dependent

component of the instrumental function (Ida et al., 2001). The

adjusted data coincide well with the data in the adjacent

segments. There are detectable deviations in the background

intensities, while the main features of the peak profiles are

only slightly deviated. Some data points located near the edges

of the data segments show extraordinary values.

Fig. 2(c) shows a series of combined intensity data, obtained

by merging the adjusted intensity data for each detector. The

intensity values in the overlapping regions are evaluated as the

weighted averages of the two intensity values by the following

equation:

ðyÞj0 ¼ ð1� �j0 Þðy1Þj0 þ �j0 ðy20 Þj0 : ð43Þ
The weight �j0 for the abscissa xj0 is applied:

�j0 ¼
2½ðxj0 � xLÞ=ðxH � xLÞ�2

for xL � xj0 < ðxL þ xHÞ=2;

1� 2½ðxH � xj0 Þ=ðxH � xLÞ�2
for ðxL þ xHÞ=2 � xj0 < xH;

8>><
>>:

ð44Þ

where xL and xH are the lower and higher limits of the over-

lapping range, respectively. The extraordinary values observed

near the edges of the data segments have automatically been

removed by the above weighting scheme, where no contri-

bution is assigned to the edge values.

3.4. Peak profile analysis

In order to examine the validity of the current method, the

diffraction peak profiles measured with the No. 1 and No. 2

detectors, and the modified profiles calculated from the data

measured with the No. 2 detector are analysed in this section.

To make the comparison easier, the preliminarily corrected

data fðy2pÞjg are further modified by

ðy200 Þj ¼ ðy2pÞj=A; ð45Þ
where A is the preliminarily evaluated value for the sensitivity

correction given in x3.3.1. The preliminarily corrected and

scaled data set fðy200 Þjg is labelled as No. 200 data.

The function defined by the following equation is used as

the model for the diffraction peak profiles:

pðx; b; S; x0;�S; 	; 
AÞ ¼ bþ SfApVðx� x0; �S; 	; 
AÞ; ð46Þ
where fApVðx;�S; 	; 
AÞ is the asymmetrized pseudo-Voigt

function defined by the convolution of the pseudo-Voigt

function fpVðx; �S; 	Þ and a normalized asymmetric function

fAðx; 
AÞ,
fApVðx; �S; 	; 
AÞ ¼ fpVðx; �S; 	Þ � fAðx; 
AÞ: ð47Þ

The pseudo-Voigt function is defined by a linear combination

of the Gaussian function fGaussðx; wÞ and Lorentzian function

fLorðx; wÞ with the same full width at half-maximum, given by

fpVðx; �S; 	Þ ¼ ð1� 	ÞfGauss½x; �S=2ðln 2Þ1=2� þ fLorðx; �S=2Þ;
ð48Þ

where 	 is the shape parameter varying the sharpness of the

peak profiles. The formula for the Gaussian function is given

by

fGaussðx; wÞ ¼ ��1=2w�1 expð�x2=w2Þ: ð49Þ
The definition of the Lorentzian function is given in equation

(21). An asymmetric function of the following formula is

applied here:

fAðx; 
AÞ ¼ j
Aj�1 expð�x=
AÞ for 0 � x=
A;
0 for x=
A < 0:

�
ð50Þ

The constant background b, integrated intensity S, peak

position x0, FWHM of the symmetric component �S, shape

parameter of the pseudo-Voigt function �, and parameter for

asymmetry 
A are treated as profile parameters to be opti-

mized.

Figs. 5–7 show the results for the raw 100, 002 and 101

reflection data measured with the No. 1 and No. 2 detectors,

the preliminarily corrected and scaled profiles (No. 200) and the

final adjusted profiles (No. 20) for the No. 2 detector. Other

reflection peaks at higher diffraction angles showed relatively

less significant difference in shape between adjacent detectors.

The fitting residuals are almost within the experimental

errors for all the cases. It supports the validity of the error

estimation described in x2.4 and also the errors estimated for

the optimized parameters by the least-squares method. It also

means that the currently applied sets of profile parameters

sufficiently reproduce the experimental profiles; in other
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words, no more information about the peak profiles could be

extracted from the experimental data by adding any other

parameters.

The optimized profile parameters are listed in Tables 2–4.

The optimized values for the background b and integrated

intensity S of the preliminarily corrected and scaled data

(No. 200) coincide well with the values estimated for the No. 1

profiles, but significant differences are found for the optimized

values of x0, �S, 	 and 
A. The smaller values of �S in the No. 2

and No. 200 profiles indicates that the peak profiles measured

with the No. 2 detector is narrower than those measured with

the No. 1 detector.

In contrast, all the optimized profile parameters for the

No. 20 data adjusted by the Fourier method coincide fairly well

with the profile parameters for the No. 1 data within the

research papers
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Table 2
The optimized profile parameters for the 100 diffraction peak intensity
data of ZnO powder measured with the No. 1 and No. 2 detectors.

The data listed under No. 20 0 and No. 20 are the preliminarily corrected and
scaled values and final adjusted values calculated by the Fourier method,
respectively. b is the constant background, S is the integrated intensity, 2�0 is
the peak position, �S and 	 are the full width at half-maximum (FWHM) and
the shape parameter of the component pseudo-Voigt function, and 
A is the
asymmetry parameter.

No. 1 No. 2 No. 20 0 No. 20

b 194 (3) 209 (3) 188 (4) 183 (3)
S 253.4 (10) 174.1 (9) 250.4 (13) 251.4 (8)
2�0 (�) 24.7570 (3) 24.7547 (2) 24.7584 (2) 24.7573 (2)
�S (�) 0.0261 (4) 0.0228 (4) 0.0228 (4) 0.0257 (3)
	 0.851 (11) 0.938 (16) 0.937 (16) 0.865 (10)

A (�) �0.0033 (4) �0.0048 (3) �0.0048 (3) �0.0037 (3)

Table 3
The optimized profile parameters for the 002 diffraction peak intensity
data of ZnO powder measured with the No. 1 and No. 2 detectors.

See Table 2 for definitions.

No. 1 No. 2 No. 20 0 No. 20

b 193 (3) 214 (3) 194 (4) 193 (3)
S 155.6 (8) 108.6 (7) 156.2 (10) 156.4 (7)
2�0 (�) 26.798 (3) 26.7977 (3) 26.8013 (3) 26.7999 (5)
�S (�) 0.0261 (4) 0.0207 (5) 0.0207 (5) 0.0257 (3)
	 0.81 (2) 0.921 (19) 0.921 (19) 0.821 (13)

A (�) �0.001 (3) �0.0038 (3) �0.0038 (3) �0.0024 (5)

Table 4
The optimized profile parameters for the 101 diffraction peak intensity
data of ZnO powder measured with the No. 1 and No. 2 detectors.

See Table 2 for definitions.

No. 1 No. 2 No. 20 0 No. 20

b 182 (4) 209 (4) 189 (5) 183 (4)
S 477.3 (13) 331.7 (11) 477 (2) 478.2 (11)
2�0 (�) 28.2069 (2) 28.2042 (2) 28.2078 (2) 28.2067 (2)
�S (�) 0.0260 (3) 0.0237 (3) 0.0237 (3) 0.0265 (2)
	 0.884 (8) 0.936 (11) 0.935 (11) 0.866 (7)

A (�) �0.0036 (2) �0.0046 (2) �0.0046 (2) �0.0035 (2)

Figure 7
The results of profile fitting for the 101 diffraction peak profiles. See the
caption of Fig. 5 for definitions.

Figure 5
The results of profile fitting for the 100 diffraction peak profiles of a ZnO
powder sample measured with the No. 1 and No. 2 detectors. The lower
part shows the raw, corrected and adjusted values of intensities as
markers, and the fitted values as solid lines. The difference plots of the
fitting are shown as solid lines in the upper part, accompanied by the
experimental errors as broken lines. The raw intensity data are labelled
No. 1 and No. 2, the preliminarily corrected and scaled values No. 20 0, and
the final adjusted values No. 20. The broken lines labelled No. 20 in the
upper part were calculated by applying equations (30)–(33).

Figure 6
The results of profile fitting for the 002 diffraction peak profiles. See the
caption of Fig. 5 for definitions.
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experimental errors, except that small differences are found in

the background parameter of the 100 diffraction and 	 para-

meter of the 101 diffraction. This means that the current

method has succeeded in adjusting the difference in width,

asymmetry and sharpness of the peak profiles.

It should be noted that the procedures to adjust the

segmented intensity data applied here do not require any

diffraction peak profile fitting. It would be quite easy to

automate the procedures for cases in which overlapping data

regions exist, doubly measured with the adjacent detectors.

4. Conclusion

A Fourier method to connect segmented intensity data

measured with a multiple-detector system has been devel-

oped. Not only the differences in background, sensitivity and

shift in peak positions, but the differences in width, asymmetry

and sharpness of the peak profiles measured with the adjacent

detectors can be adjusted by the Fourier method with satis-

factory precision.
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