A compact furnace for synchrotron powder diffraction measurements up to 1807 K

Masatomo Yashima, Masahiko Tanaka, Kenjiro Oh-uchi and Takashi Ida
A compact furnace has been designed and fabricated for measurements of high-resolution synchrotron radiation powder diffraction profiles from materials at high temperatures up to 1807 K in air, using the multiple-detector system at the BL-4B2 experimental station.

1. Introduction

High-temperature synchrotron powder diffractometry is a powerful method to study crystal structure and phase transformations at high temperatures (Yashima & Tanaka, 2004). Recently, we designed and fabricated a high-temperature furnace to measure high-resolution synchrotron powder diffraction data at the BL-3A experimental station of the Photon Factory (Yashima & Tanaka, 2004). High-resolution experiments with a single detector at the BL-3A station require much smaller step sizes to measure the diffraction profile, and the scan time for the measurement of the whole powder pattern is long. For example, the scan time for the whole powder pattern from 10.000 to 150.000 in 2θ with a step interval of 0.004° step⁻¹ and 1.5 s counting time, was 44 h at BL-3A, including the time for moving the detector arm. Toraya et al. (1996) constructed a multiple-detector system with six detector arms for synchrotron powder diffraction measurements at the BL-4B2 experimental station of the Photon Factory, High Energy Accelerator Research Organization (KEK), Japan. Using this diffractometer, the scan time could be reduced to 7 h. The space around the sample of the multiple-detector system is too small to install the previous furnace that was designed for the BL-3A station. Here we report a new compact electric furnace to measure high-resolution synchrotron powder diffraction profiles from materials at high temperatures up to 1807 K in air, using the multiple-detector system at the BL-4B2 station.

2. The furnace

The new furnace, suitable for experiments at the BL-4B2 experimental station of the Photon Factory (Fig. 1a), is a modified version of the previous one suitable for experiments at the BL-3A station (Yashima & Tanaka, 2004). The size of the new furnace (ca 20 cm in diameter) is smaller than that of the previous one (ca 30 cm in diameter). The distance between the Soller slit (Fig. 1c) and the sample is short; therefore a blower for air cooling (Fig. 1b) was installed to prevent heating of the Soller slits. This furnace consists of ceramic refractory with MoSi₂ heaters, a steel body cooled by flowing water and an automatic sample stage. The sample stage can be rotated about the normal to the sample surface and the position of the sample along the normal direction can be adjusted with a stepping motor. The temperature of the furnace was controlled with an R-type (Pt/Pt–13 wt% Rh) thermocouple placed between the sample and heater. A heating test was performed from room temperature to 1807 K using the new furnace attached to the multiple-detector system (Toraya et al., 1996) installed at the BL-4B2 experimental station. The new furnace exhibited good temperature stability; the
change of temperature with time was small. For example, the
temperature at the control thermocouple could be kept constant at
1773.1 ± 0.1 K. Using the new furnace, high-quality and high-reso-
lution synchrotron powder diffraction data of NIST SRM ceria were
obtained at 1703 K (Yashima et al., 2005). This high-temperature
system will be applicable to many applications in high-temperature
crystallography and structural science.

We express special thanks to Professor Emeritus H. Toraya
(Nagoya Institute of Technology; present affiliation: Rigaku Co.), Mr
H. Hibino (Nagoya Institute of Technology) and the staff of the
Photon Factory and Rigaku Company for discussions on the design of
the new high-temperature synchrotron powder diffraction system.

We gratefully acknowledge Mr E. Bannai (Euro System Co.) for the
design and fabrication of the furnace. Financial support was provided
partly by the Joint Development Research at High Energy Accel-
erator Research Organization (KEK) and by the Grants-in-Aid for
Scientific Research (B) of the Monbu-Kagaku-sho. This study was
carried out under the PAC Nos. 2002G074, 2002G229, 2003G039,

References