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Formula for the asymmetric diffraction peak profiles based on double
Soller slit geometry
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The asymmetric diffraction peak profiles and peak shift of conventional powder diffractometry
systems caused by the angular divergence along the vertical axis are reproduced by asymmetrized
peak profile functions. The asymmetrization is achieved by convoluting the angular dispersions of
both incident and scattered beams along the vertical axis. A general method for mapping vertical
window functions to the horizontal direction is proposed, and the formulas of two types of
horizontal window functions mapped from symmetric double vertical Bartlett~triangular! and
Gaussian window functions are presented. Both formulas incorporate a single asymmetry parameter
connected with the open width of the Soller slits along the vertical direction. When experimental
diffraction peak profiles are fitted by asymmetrized pseudo-Voigt functions, the asymmetry
parameter gives good coincidence with the Soller slit angle, which is clearly specified in a given
diffractometer. ©1998 American Institute of Physics.@S0034-6748~98!00806-5#
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I. INTRODUCTION

It is generally accepted that the experimental diffract
peak profiles are the convolution of the wavelength spect
with various functions arising from instrumental factors a
specimen defects.1 In powder diffractometry with large ver
tical divergence, the diffraction peaks are shifted from th
original positions and peak profiles become asymmetric.
etveld has introduced a ‘‘semiempirical’’ asymmetry fact
intended to correct peak shapes for this effect.2 Howard has
proposed an approximation of asymmetric diffraction pe
by a sum of Gaussians which incorporates a single asym
try parameter.3 The Howard method is based on a convo
tion of a Gaussian profile with a rectangular window profi
along the vertical direction. However, the assumed geom
does not match the double Soller slit geometry shown in F
1, which is commonly adopted in commercial powder x-r
diffractometry systems with divergent beam sources.

Although considerable improvements in analysis of n
tron or synchrotron diffractometry have recently be
achieved,4 mathematically clear formalism applicable to th
double Soller slit geometry of conventional powder x-r
diffractometers has not yet been reported to the auth
knowledge. Considering the rapid development of compu
and computing methods, it is worth establishing a prec
mathematical model for commonly used diffractometry s
tems, even if the exact form might need more computat
time than approximated ones.

In this article, the author presents mathematical mod
for diffraction peak profile asymmetrized by vertical dive
gence of both incident and scattered beams limited by do
Soller slit geometry, and an example of fitting to experime
tal diffraction peak profiles.
2260034-6748/98/69(6)/2268/5/$15.00
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II. MODEL FUNCTIONS

A. General procedure for mapping vertical window
functions to horizontal direction

Figure 2 illustrates the general geometry of powder d
fractometry including vertical divergence. Herea andb are,
respectively, the angles of the deviations of the incident a
scattered beams from the horizontal plane. The diffract
angle 2u0 for given a and b is exactly related to the hori
zontal angle 2u by the following equation:

cos 2u05cos 2u cosa cosb1sin a sin b ~1!

or

2u22u05arccos~cos 2u0 seca secb2tan a tan b!

22u0[z~a b!. ~2!

The functionz(a,b) can be approximated by

z~a,b!>2
a21b2

2
cot 2u01a b cosec 2u0 , ~3!

on the assumption thata and b are sufficiently small. By
changing the variables (a,b) to (x,y) by a[(x1y)/A2 and
b[(x2y)/A2, the above relation can be simplified as

z>2 1
2 ~x2 t2y2/t !, ~4!

wheret[tan u0.
We assume that the vertical window profiles of the in

dent and scattered beams to bef V1(a) and f V2(b), and the
horizontal profile to bef H(2Q22u), where 2Q is the hori-
zontal angle which defines the position of the receiving
or the detector. When we defineD2u[2Q22u0, the con-
voluted profile functionP(D2u) has a general form of
8 © 1998 American Institute of Physics
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P~D2u!5E E E f H~2Q22u! f V1~a! f V2~b! d~2u

22u02z! da db d~2u!, ~5!

whered(x) is the Dirac delta function. The integration of E
~5! on 2u gives

P~D2u!5E E f H~D2u2z! f V1~a! f V2~b! da db.

~6!

When we compare the above formula with the followi
standard form of convolution:

P~D2u!5E f H~D2u2z! w~z! dz, ~7!

wherew(z) is the window function to be convoluted to th
original profile functionf H(z), w(z) is found to be given by
the following integration:

w~z!5E f V1~a! f V2~b!
db

dz
da, ~8!

or alternatively,

FIG. 1. Schematic view of a conventional powder diffractometry syst
with double Soller slit geometry.

FIG. 2. Geometry of powder diffractometry including vertical divergen
The overall diffraction angle and its horizontal component are denoted
2u0 and 2u. a and b are the angles of the deviations of the incident a
scattered beams from the horizontal plane.
w~z!5E f V1S x1y

A2
D f V2S x2y

A2
D dy

dz
dx. ~9!

B. Mapping of vertical Bartlett windows to the
horizontal direction

If the Soller slits are ideally designed and the bea
source or the detector have sufficient length in the vert
direction, the vertical window functions should have the p
file of a triangle as illustrated in Fig. 3, which is known as
Bartlett window in the field of time series analysis.5 The
normalized Bartlett window functionf B(w) with the full
width at half maximum~FWHM! of FB is given by

f B~w!5
1

FB
S 12

uwu
FB

D for uwu,FB , ~10!

and f B(w)50, elsewhere. Usually the Soller slits for the i
cident and scattered beams have symmetric geometry, th

f V1~w!5 f V2~w!5 f B~w!. ~11!

The horizontal window functionwBB(z) mapped from Eqs.
~4!, ~10!, and~11! is derived by solving the integration in Eq
~9!. In caset<1(2u0,90°), the analytical solution ofwBB

has the following forms:

FB
2

4
wBB52

~11t2 u!@3t1A12~12t2! u#

2~11tA12~12t2!u!

1S 12
11t2

2
uD ln

11A12~12t2!u

~11t !A2u

for 2
1

t2
<u<2

12t2

4t2
, ~12!

.
y

FIG. 3. Profiles of normalized Bartlett and Gaussian window functions w
FWHM (FB , FG) of 1.
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FB
2

4
wBB52

~11t2 u!@3t1A12~12t2!u#

2~11tA12~12t2!u!
1t u

12A2~12t2!u1S 11
11t2

2
uD

3 ln
11A12~12t2! u

~11t !A2u
1

11t2

2
u ln

12t

11t

for2
12t2

4 t2
<u,0, ~13!

FB
2

4
wBB52

~11t2 u!@3t1A12~12t2!u#

2~11tA12~12t2!u!

1S 11
11t2

2
uD ln

11A12~12t2!u

~11t !Au

for 0,u<1, ~14!

where

u[
z

FB
2 t

. ~15!

In caset.1, wBB can be derived from the above form an
the following relation:

wBB~z,t !5wBBS 2z,
1

t D . ~16!

Figure 4 plots the profiles of thewBB(z) function for various
t values. It should be noted thatwBB(z) has finite width at
t51, which means that the vertical divergence in conv
tional diffractometry system contributes to the width of t
convoluted diffraction peak, even ift51.

C. Mapping of vertical Gaussian windows to the
horizontal direction

Although the geometry of Soller slits is naturally mo
eled by the double vertical Bartlett windows discussed in
preceding section, we here examine the formula for mapp

FIG. 4. Horizontal window functionwBB mapped from symmetric double
vertical Bartlett window functions with the FWHMFB51 for varioust
(5tan u0) values.
-

e
g

vertical Gaussian windows, the analytical solution of whi
is easier owing to the infinite integral range. Furthermore
model based on Gaussian windows will be appropriate, if
real Soller slits have random error in geometry. The norm
ized Gaussian window functionf G(w) with the FWHM of
FG is given by

f G~w!5
2Aln 2

Ap FG

expF24~ ln 2!
w2

FG
2 G ~17!

or

f G~w!5
1

ApCG

expF2
w2

CG
2 G , ~18!

where

CG[
FG

2Aln 2
. ~19!

The profile off G(w) is illustrated in Fig. 3. When the Solle
slits for the incident and scattered beams have symme
geometry again,

f V1~w!5 f V2~w!5 f G~w!. ~20!

The horizontal window functionwGG mapped by Eqs.~4!
and ~9! has a much more simple analytical form thanwBB ,
that is,

wGG5
2

pCG
2

expF t221

t

z

CG
2 GK0S t211

t

uzu

CG
2 D , ~21!

where K0(x) is the modified Bessel function of the secon
kind. Figure 5 plots the profiles of thewGG(z) function for
varioust values. The profile ofwGG(z) is found to be quite
similar to that ofwBB(z) shown in Fig. 4, while the analyti-
cal forms are considerably different.

III. APPLICATION TO FIT EXPERIMENTAL PEAK
PROFILES

In this section, the above models for powder diffracti
profiles are tested by fitting to experimental powder x-r
diffraction data. Experimental diffraction profiles of Si we

FIG. 5. Horizontal window functionwGG mapped from symmetric double
vertical Gaussian window functions with the FWHMFG51 for varioust
(5tanu0) values.
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collected with a commercial powder x-ray diffractomete
Rigaku RINT-2000, with a CuKa radiation tube as the x-ra
source. The radius of the goniometer circle is 185 mm,
0.15 mm width receiving slit, 1°-open divergence and sc
tering slits were used. The specified Soller slit angle 5°
identified with twice the FWHM of the vertical window
functions. No corrections of the instrumental error were
plied. The overall profile function is calculated by numeric
integration of Eq.~7!, assuming that the horizontal profile
expressed by a pseudo-Voigt function,6,7

f H~x!5~12h!
2Aln 2

Ap G
expF24~ ln 2!S x

G D 2G
1h

2

p G F114S x

G D 2G21

, ~22!

h51.36603
GL

G
20.47719S GL

G D 2

10.11116S GL

G D 3

,

~23!

G5~GG
5 12.69269GG

4 GL12.42843GG
3 GL

2

14.47163GG
2 GL

310.07842GG GL
41GL

5!1/5, ~24!

FIG. 6. Experimental~open circles! and calculated~solid line! peak profiles
and error plot~dotted line! for Si 111-reflection. Calculation is based on th
geometry of double vertical Bartlett~triangular! windows.

TABLE I. Fitting parameters for Si diffraction data on the model based
symmetric double vertical Bartlett~triangular! windows.

hkl 2u0 ~deg! GG ~deg! GL ~deg! FB ~deg! f f 0 RP(%)

111 28.435 0.043 0.019 2.38 1276 60 5.2
220 47.296 0.044 0.023 2.61 613 33 3.3
311 56.113 0.048 0.025 2.58 446 26 3.1
400 69.115 0.052 0.026 2.93 112 12 3.3
331 76.366 0.047 0.026 2.97 216 19 2.9
422 88.011 0.051 0.045 2.68 191 19 2.6
333 94.930 0.046 0.046 2.78 163 15 2.3
440 106.684 0.042 0.059 2.81 82 14 3.0
531 114.067 0.044 0.072 2.52 191 14 2.6
620 127.509 0.039 0.086 2.89 190 17 2.6
533 136.857 0.048 0.100 2.88 106 18 3.2
,

d
t-
s

-
l

where GG and GL are Gaussian and Lorentzian FWHM
Two types of window functions,wBB(z) defined by Eqs.
~12!–~15! andwGG(z) defined by Eq.~21! are examined. The
position and the integrated intensity of theKa1 peak
(2u0 , f ), Gaussian and Lorentzian FWHMs (GG,GL), con-
stant backgroundf 0, and the FWHM of the Soller slitsFB or
FG are treated as independent adjustable parameters for
peak. The results of the least-squares fit to 111-533 refl
tions are listed in Tables I and II. TheR factor for the profile
fitting RP defined by

RP5(
i

u Y~2u i !obs2Y~2u i !calc u / (
i

Y~2u i !obs, ~25!

where Y(2u i)obs and Y(2u i)calc are, respectively, observe
and calculated data, are listed in the last columns of
tables. Figures 6 and 7 show the experimental Si 1
reflection data, the best fit curves and the deviations.
observed asymmetry of the peak is well reproduced by
model functions. Practically no significant difference h
been found in the best fit curve or estimated parameters
tween models based on Bartlett and Gaussian window fu
tions. The estimated FWHM values of the Soller slitsFB and
FG are close to 2.5° for all reflection peaks, which can

FIG. 7. Experimental~open circles! and calculated~solid line! peak profiles
and error plot~dotted line! for Si 111-reflection. Calculation is based on th
geometry of double vertical Gaussian windows.

TABLE II. Fitting parameters for Si diffraction data on the model based
symmetric double vertical Gaussian windows.

hkl 2u0 ~deg! GG ~deg! GL ~deg! FG ~deg! f f 0 RP(%)

111 28.435 0.043 0.019 2.36 1287 46 4.2
220 47.296 0.045 0.023 2.56 616 29 3.0
311 56.113 0.049 0.025 2.54 447 24 3.0
400 69.115 0.054 0.024 2.94 112 12 3.4
331 76.366 0.050 0.023 3.03 215 19 3.0
422 88.011 0.053 0.041 2.82 189 20 2.6
333 94.930 0.049 0.045 2.74 163 14 2.3
440 106.684 0.045 0.057 2.81 82 14 2.9
531 114.067 0.046 0.071 2.44 191 14 2.5
620 127.509 0.043 0.085 2.84 191 16 2.6
533 136.857 0.050 0.100 2.80 106 17 3.3



le
e
th
It
in
va

nl
vo
r

c

e
n

of
ly

g,

v.

2272 Rev. Sci. Instrum., Vol. 69, No. 6, June 1998 T. Ida
identified with half of the specified Soller slit open ang
The estimated FWHM of the horizontal Gaussian compon
GG is close to the value 0.046° which is the arctangent of
ratio of the receiveng slit width to goniometer radius.
should be noted that the iteration steps in the curve fitt
procedure normally converged in all cases, and the final
ues ofFB andFG are plausible, even if 2u0 is near 90° and
the profile is almost symmetric, which supports that not o
the asymmetry but also the symmetric feature of the con
luted profile is considerably affected by the vertical dive
gence. Simultaneous estimation ofGG, GL andFB or FG for
each peak seems to have uncertainty due to the mutual
relations. However, these uncertainties are expected to
avoided in a Rietveld analysis, when the angular dep
dences ofGG and GL are properly modeled and a consta
.
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y
-

-
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value forFB or FG is assumed. SinceFB or FG is a purely
instrumental factor, the value can be fixed, if the geometry
the Soller slits of a given diffractometer is once precise
specified.
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