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Efficiency in the numerical calculation of absorption corrections for cylinders

has been examined. Two mathematical expressions for the correction factors

have been evaluated by two methods for numerical integration. It has been

found that the Gauss–Legendre quadrature applied to the formula proposed by

Thorkildsen & Larsen [Acta Cryst. (1998), A54, 172–185] gives results with

relative errors �10�6, using 12 � 12 terms in the numerical integration. The

conventional approach, using Simpson’s method in conjunction with the formula

given by Dwiggins [Acta Cryst. (1975), A31, 146–148] for the absorption

correction, is far less efficient.

1. Introduction

Recently, powder diffraction measurements using capillary specimens

have become more popular, in accord with expanded usage of

synchrotron X-ray sources and/or high-performance X-ray detection

systems, including one- or two-dimensional X-ray detectors. The

effect of absorption on the diffraction intensity from a powder sample

filled into a thin capillary tube can be modelled by that of cylinder, if

homogeneities of the incident X-ray beam intensity and the filling

factor of the powder are assumed. A numerical table listing absorp-

tion correction factors A*(�R, �) for cylinders is given as Table 6.3.3.2

in International Tables for Crystallography, Vol. C (Maslen, 1999),

where � is the linear absorption coefficient, R the radius of the

cylinder and � the Bragg angle. The absorption correction factor is

identical to the reciprocal of the overall transmission coefficient

A(�R, �) of a cylinder, which has been evaluated using Simpson’s

numerical integration method with 101 � 101 terms, applied to the

formula for a two-dimensional integral proposed by Dwiggins (1975).

The formula of Dwiggins is given by
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The accuracy of the listed values, having relative errors of less than

0.1% for �R 2 (0, 2.5), is sufficient for most purposes, taking into

account that the observed integrated intensities typically have rela-

tive errors of the order of 10�2. However, the above formula is not

favourable for numerical evaluation of the integral, because a weak

singularity of the integrand exists at x = 1 and ’ = �/2 � �, where the

first derivative of the integrand approaches infinity.

Thorkildsen & Larsen (1998a,b) proposed another formula for

evaluating the transmission coefficient of cylinder, given by
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In the limits � ! 0 and �/2, the above formula is replaced by
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In this communication, the results of an investigation of accuracy

and convergence behaviour using an increasing number of terms in

the numerical integral to evaluate the transmission coefficient of

cylinders, applying the two formulae given by equations (1) and (2),

and two numerical methods, Simpson and Gauss–Legendre quad-

ratures, are reported. It will be shown that the Gauss–Legendre

quadrature applied to the formula proposed by Thorkildsen & Larsen

(1998a,b) given by equation (2) is much more efficient than Simpson’s

method applied to the conventional formula given by equation (1).

2. Numerical method

The numerical evaluation of the two-dimensional integral for the

integrand function f(x,y) was simply calculated by the following

common formula:

RB
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RD
C

f ðx; yÞ dy dx ’ ðB� AÞðD� CÞ PN�1

i¼0

PN�1

j¼0

wiwjf ðxi; yjÞ; ð5Þ

where xi ¼ Aþ ðB� AÞ�i and yj ¼ C þ ðD� CÞ�j, for abscissae {�i}
normalized to the region [0, 1] and weight factors {wi}, uniquely

determined depending on the method of quadrature and the number

of terms N.

Abscissae and weights for Simpson’s quadrature are given by

�i ¼ i=ðN � 1Þ; ð6Þ

wi ¼
1=3N for i ¼ 0, N � 1;

4=3N for i odd;

2=3N otherwise.

8<
: ð7Þ
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Numerical values of the abscissae and weights for eight- and 12-term

Gauss–Legendre quadratures, calculated using the method given by

Press et al. (1986), are listed in Table 1.

3. Results of the calculations

First, accurate values of the transmission coefficients A(�R, �) were

evaluated by applying a Gauss–Legendre quadrature of 100 � 100

terms to a modified version of equation (1), where substitution of a

variable x = sin! is applied to remove the singularity of the integrand.

The accuracy of the values was confirmed by viewing the asymptotic

behaviour of the calculated values of the transmission coefficients on

increasing the number of terms N. The values of the absorption

correction A*(�R, �) calculated for �R = 1 and � = 0, 15, . . . , 90� are

listed in the final column of Table 2.

Next, the minimum numbers of terms N necessary to obtain the

values of the transmission coefficients within predefined relative

errors were searched for by applying the two methods of numerical

integration in conjunction with the formulae given by equations (1)

and (2). The numbers were determined by detecting five continuing

correct values within the allowed errors on increasing the number of

terms for the numerical integrals.

Table 2 lists the estimated minimum numbers of terms N needed to

obtain the correct value of the transmission coefficient for �R = 1

within the relative allowable errors of " = 10�3 and 10�4 for Simpson’s

method, and " = 10�4, 10�5 and 10�6 for the Gauss–Legendre

quadrature. It is clearly seen that the Gauss–Legendre quadrature is

more efficient than Simpson’s method for both mathematical

formulae. Note that the computation time for the two-dimensional

numerical integral is roughly proportional to N2, unless parallel

computing is applied. It was also found that the enhanced accuracy of

" = 10�6 is obtained with only a slightly increased computational cost

when the formula of equation (2), proposed by Thorkildsen & Larsen

(1998a,b), is applied.

Table 3 lists the minimum number of terms of the Gauss–Legende

quadrature needed for the accuracy of " = 10�6, applied to the

formula of Thorkildsen & Larsen, for the values �R = 0.5, 1.0, . . . , 4.0

and � = 0, 15, . . . , 90�. Since the formula of Thorkildsen & Larsen

reduces to a one-dimensional integral in the limits �! 0 and �/2, it is

natural that the two-dimensional numerical integration becomes less

effective when � approaches 0 or �/2. However, it is not advised to

change the formula for different values of �, because this will make

the algorithm more complicated to retain continuity of the calculated

values.

The accuracy achieved by the 8 � 8-term Gauss–Legendre quad-

rature applied to the formula of Thorkildsen & Larsen is better than

that of Dwiggins (1975) over the region 0 � �R � 2.5. One can easily

obtain improved accuracy, simply by increasing the number of terms

N.

4. Conclusion

The Gauss–Legendre quadrature applied to the formula proposed by

Thorkildsen & Larsen (1998a,b) provides an efficient numerical

method to evaluate transmission coefficients and absorption correc-

tion factors for cylinders. Results are obtained for arbitrary values of

�R and � by a simple algorithm for the numerical integrations,

without interpolation in a table of numerical values.
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Table 2
Number of terms N needed to obtain the values of the transmission coefficients for
�R = 1 within relative errors of ".

The final column lists the exact values of the absorption correction for �R = 1.

Formula Dwiggins (1975) Thorkildsen & Larsen (1998a)

Method Simpson Gauss–Legendre Simpson Gauss–Legendre

" 10�3 10�4 10�4 10�5 10�6 10�3 10�4 10�4 10�5 10�6 A*(1,�)

� = 0� 23 71 11 20 36 15 25 7 7 8 5.09098
15� 19 57 10 18 32 9 17 6 7 8 4.93242
30� 17 51 9 17 32 7 9 5 6 7 4.54397
45� 15 49 9 17 31 7 11 5 5 6 4.10228
60� 15 47 9 16 29 5 9 4 5 6 3.72865
75� 17 49 9 17 29 7 13 5 6 7 3.47912
90� 19 57 10 18 32 13 23 6 7 8 3.38875

Table 3
Number of terms N needed to obtain the values of the transmission coefficients for
�R = 0.5, 1.0, . . . , 4.0 within relative errors of " = 10�6 by applying the Gauss–
Legendre quadrature to the formula of Thorkildsen & Larsen.

�R 0.5 1 1.5 2 2.5 3 3.5 4

� = 0� 8 8 9 10 11 12 12 13
15� 6 8 8 9 10 9 10 11
30� 6 7 7 8 8 9 9 10
45� 6 6 7 7 8 7 8 9
60� 5 6 7 6 7 8 8 8
75� 7 7 8 8 9 9 7 8
90� 7 9 8 10 11 12 12 13

Table 1
Abacissae and weight factors for eight-term (N = 8) and 12-term (N = 12) Gauss–
Legendre integrals.

Values for N/2 � j < N are given by �j = 1 � �N�1�j and wj = wN�1�j.

j �j wj

N = 8 0 0.019855071751232 0.050614268145188
1 0.101666761293187 0.111190517226687
2 0.237233795041836 0.156853322938943
3 0.408282678752175 0.181341891689181

N = 12 0 0.009219682876640 0.023587668193254
1 0.047941371814763 0.053469662967441
2 0.115048662902848 0.080039164271149
3 0.206341022856691 0.101583713361521
4 0.316084250500910 0.116746268269177
5 0.437383295744266 0.124573522906701
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