
electronic reprint
Journal of

Applied
Crystallography

ISSN 0021-8898

Editor: Anke R. Kaysser-Pyzalla

Particle statistics of a capillary specimen in synchrotron
powder diffractometry

T. Ida

J. Appl. Cryst. (2011). 44, 911–920

Copyright c© International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that
this cover page is retained. Republication of this article or its storage in electronic databases other than as
specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

Journal of Applied Crystallography covers a wide range of crystallographic topics from
the viewpoints of both techniques and theory. The journal presents papers on the applica-
tion of crystallographic techniques and on the related apparatus and computer software.
For many years, the Journal of Applied Crystallography has been the main vehicle for
the publication of small-angle scattering papers and powder diffraction techniques. The
journal is the primary place where crystallographic computer program information is
published.

Crystallography Journals Online is available from journals.iucr.org

J. Appl. Cryst. (2011). 44, 911–920 T. Ida · Particle statistics of a capillary specimen

http://journals.iucr.org/j/
http://dx.doi.org/10.1107/S002188981102824X
http://journals.iucr.org/services/authorrights.html
http://journals.iucr.org/j/
http://journals.iucr.org


research papers

J. Appl. Cryst. (2011). 44, 911–920 doi:10.1107/S002188981102824X 911

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 4 April 2011

Accepted 14 July 2011

# 2011 International Union of Crystallography

Printed in Singapore – all rights reserved

Particle statistics of a capillary specimen in
synchrotron powder diffractometry

T. Ida

Ceramics Research Laboratory, Nagoya Institute of Technology, Asahigaoka 10-6-29, Tajimi, Gifu

507-0071, Japan. Correspondence e-mail: ida.takashi@nitech.ac.jp

Particle statistics in synchrotron powder diffractometry measured in a capillary

transmission mode have been theoretically and experimentally investigated.

General mathematical formulae for statistical analysis of observed intensities

measured by a spinner-scan method are derived. It is shown that an additional

parameter to characterize the size distribution of crystallites can be evaluated

from the skewness of the distribution of measured diffraction intensities

obtained by the spinner-scan method applied to capillary specimens.

1. Introduction

Analysis of observed powder diffraction intensities generally

assumes a sufficiently large number of crystallites that satisfy

the diffraction condition. However, it becomes difficult to

justify this assumption when the size of crystallites in a powder

sample is not small enough and/or the diffractometer has high

angular resolution. It is known that the experimental errors

caused by particle statistics for a crystalline powder with a

particle size of several micrometres are comparable to those

caused by counting statistics about intensity data measured

under typical experimental conditions (Alexander et al.,

1948).

Recently, the author has found that the effect of particle

statistics can be evaluated quantitatively by analysis of the

diffraction intensities observed by step-scan measurements

about the rotation angle of the sample spinner attached to a

laboratory powder diffractometer (Ida et al., 2009). It has been

concluded that the results of the spinner-scan measurements

include information about the texture of the specimen, and

evaluation of crystallite sizes of about several micrometres can

be achieved by the method, while it is difficult to evaluate

crystallite sizes over 0.1 mm by conventional line broadening

analysis of a powder diffraction peak profile.

It is expected that the effect of particle statistics will become

more pronounced in synchrotron powder diffraction

measurements as a result of the high brilliance of synchrotron

light sources. On the other hand, higher transparency of the

specimen for the tentatively higher energy (shorter wave-

length) of synchrotron X-ray photons may reduce the effect of

particle statistics owing to the extension of the penetration

depth and the effective irradiated volume of specimen.

It is also expected that the axial rotation of a capillary

specimen in transmission-mode geometry applicable in

synchrotron powder diffractometry will provide more infor-

mation about the particle statistics than in-plane rotation of a

flat specimen. The number of statistically independent data

available on the axial rotation of a capillary specimen is esti-

mated at about several tens of thousands, because the angular

resolution about the axial rotation is of the order of 0.01�,

while in-plane rotation of a flat specimen gives a number of

about several hundred, which is restricted by the aspect ratio

of the tolerable axial divergence to the equatorial divergence,

determined by the geometry of the goniometer.

The skewness of the statistical distribution of the diffraction

intensities can be evaluated from such a large number of

independent data. This suggests that not only the average size

of crystallites but also the broadness of the size distribution

can be estimated from a set of diffraction intensity data.

Statistical models for size distribution defined by two char-

acteristic parameters, such as lognormal, Gamma or Weibull

distributions, can be determined fully by the two characteristic

parameters.

Although the fundamental theory of particle statistics about

diffraction intensities measured with a laboratory X-ray

diffractometer has been established by the pioneering work of

Alexander et al. (1948) and De Wolff (1958), no practical

formulae applicable to the data measured in capillary trans-

mission mode or analysis of crystallite size distribution have

been reported. In this study, the author intends to construct a

generalized theoretical framework about particle statistics and

derive practical mathematical formulae that can be applied to

analysis of diffraction intensity data measured with a high-

resolution synchrotron powder diffractometer.

2. Theory of particle statistics

In this section, general theoretical formulae for particle

statistics are presented. The theoretical framework not only

includes the formulae equivalent to those derived by Alex-

ander et al. (1948) and De Wolff (1958), but is also extended to

discussions about higher-order cumulants of the statistical

distribution of the observed diffraction intensities.

It will be shown that the statistical variance of the observed

diffraction intensities is determined by the effective number of

diffracting crystallites, and the skewness of the statistical
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intensity distribution mainly depends on the dispersion of

crystallite size distribution in powder specimens.

2.1. Hypothetical case of a non-absorbing sample of uniform

particle size

First, a hypothetical situation is formalized, where all the

crystallites have the same size and the absorption of the

specimen is negligible, similarly to the theoretical work of

Alexander et al. (1948).

It is assumed that crystallites are randomly oriented in a

powder specimen, but it will not be difficult to incorporate the

effect of preferred orientation, if necessary.

The reflection multiplicity m is first treated as a unique

value for a diffraction peak, and next the effect of overlapping

non-equivalent reflections is formalized. The formulae for the

effects of the Soller slits that restrict the axial divergence of

the diffracted beam and the fundamental resolution function

connected with the equatorial divergence are also presented in

this section.

2.1.1. Effective number of crystallites and skewness of

intensity distribution. The probability � that each crystallite

contributes to the diffraction intensity of a reflection with

multiplicity m is given by

� ¼ m���X=4�; ð1Þ
where �� and �X denote the tolerance angles in the unit of

radians for the normal orientation of the diffraction plane to

deviate along the equatorial and axial directions, respectively.

The product ð���XÞ is considered to be a tolerable solid

angle, while the whole solid angle is given by 4�.

It has been assumed that �� is restricted by the ratio of the

effective focal width of X-ray source to the goniometer radius,

and �X is restricted by the open angle of the Soller slits, in the

case of a laboratory Bragg–Brentano diffractometer (Ida et al.,

2009). The axial tolerance angle �X is related to the restric-

tion of the axial divergence of the beam ��, by the following

equation:

�X ¼ ��

2 sin �
; ð2Þ

for the diffraction angle 2�. In a typical case of the source

width wsource = 0.1 mm, goniometer radius RG = 185 mm, axial

divergence angle �� = 2.5�, diffraction angle 2� = 30� and

multiplicity m = 2, the probability is estimated as � ’ 1.5 �
10�5.

It has been suggested that the solid angle of tolerance

(���X) or an instrumental constant (����) can be cali-

brated by measurements of powder with known crystallite size

distribution (Ida et al., 2009).

It is more difficult to connect each of �� and �X directly

with the optical geometry of a synchrotron beamline and a

high-resolution diffractometer with crystal analyser, as

compared with the case of a laboratory Bragg–Brentano

diffractometer. Hereafter, it is assumed that the parameter

ð����Þ can be regarded as an instrumental constant deter-

mined by the setup of the synchrotron powder diffraction

measurement system. It should be noted that the validity of

this assumption is not obvious and should be experimentally

examined.

The probability density function pjðIjÞ for the statistical

distribution of diffraction intensity Ij from the jth crystallite

can be expressed by

pjðIjÞ ¼ ð1 � �Þ �ðIjÞ þ � �ðIj � I0Þ; ð3Þ
where I0 is the diffraction intensity from a crystallite satisfying

the diffraction condition, and �ðxÞ is the Dirac delta function.

The average, variance and third central moment of the

diffraction intensity from each crystallite are then given by

hIji ¼
R1
0

Ij pjðIjÞ dIj ¼ �I0; ð4Þ

hð�IjÞ2i ¼ �ð1 � �ÞI2
0 ; ð5Þ

hð�IjÞ3i ¼ �ð1 � �Þ½�2 þ ð1 � �Þ2�I3
0 : ð6Þ

The observed diffraction intensity I is given by

I ¼PN
j¼1

Ij; ð7Þ

which means that the statistical distribution of the total

diffraction intensity I is identical to the multiple convolution

of distribution of intensity from each crystallite, that is, the

probability density function of the total diffraction intensity

PðIÞ is given by

PðIÞ ¼ R1
0

� � � R1
0

� I �PN
j¼1

Ij

 !
p1ðI1Þ � � � pNðINÞ dI1 � � � dIN: ð8Þ

Since the cumulant of the convolution is equal to the sum of

the cumulants of the component functions, the average,

variance and third central moment of the total intensity are

exactly given by

hIi ¼ R1
0

IPðIÞ dI ¼ N�I0; ð9Þ

hð�IÞ2i ¼ N�ð1 � �ÞI2
0 ; ð10Þ

hð�IÞ3i ¼ N�ð1 � �Þ½�2 þ ð1 � �Þ2�I3
0 : ð11Þ

The effective number of diffracting crystallites Neff, defined

as the ratio of the square of the average to the variance of the

total intensity I (Alexander et al., 1948), is given by the

following equation:

Neff �
hIi2

hð�IÞ2i ¼
N�

1 � � ’ N�; ð12Þ

where the last approximation will be justified for �� 1. The

quantity Neff can be evaluated experimentally and regarded as

the effective number of diffracting crystallites, because it is

equal to the expectation value of the number of particles that

satisfy the diffraction condition in the case of the non-

absorbing sample of uniform crystallite size assumed in this

section.
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The skewness of the distribution of diffraction intensity

expected to be observed for the non-absorbing crystalline

powder of uniform particle size is given by

S ¼ hð�IÞ3i
hð�IÞ2i3=2

¼ �2 þ ð1 � �Þ2

½N�ð1 � �Þ�1=2
’ 1

N
1=2
eff

; ð13Þ

where the last approximation is justified for �� 1 again. The

above equation implies that the statistical distribution of the

observed diffraction intensity is intrinsically asymmetric, but

the asymmetry will be reduced by increasing the number of

diffracting crystallites.

2.1.2. Effect of overlapping non-equivalent reflections. The

reflection peaks of a Friedel pair always appear at the same

position in powder diffractometry, but the component

diffraction intensities may not have a common value when

there is no inversion centre in the crystallographic symmetry.

Other types of systematic overlap of non-equivalent reflec-

tions can also be caused by the space-group symmetries. The

relative intensities of the 101 and 011 reflections of quartz

(P3121 or P3221) are approximately 2:1, for example (Alex-

ander et al., 1948).

The author has introduced the effective multiplicity meff,

defined by

meff �
P
k

mkIk

� �2 P
k

mkI
2
k

� ��1

; ð14Þ

for overlapping reflections with component multiplicity mk

and intensity Ik (Ida et al., 2009). The concept of the effective

multiplicity certainly simplifies the analytical procedures

related to the variance of the observed intensities, because the

treatment for overlapping non-equivalent reflections only

requires replacement of m by meff for equivalent reflections.

However, this concept should be modified to treat the skew-

ness of the diffraction intensity distribution.

Consider that two groups of non-equivalent reflections of

intensities I1 and I2 with multiplicity m1 and m2 are located at

the same peak position. The total probability � to satisfy the

diffraction condition should be divided into component

probability �1 and �2 as follows:

� ¼ �1 þ �2; ð15Þ

�1 ¼ m1���X=4�; ð16Þ

�2 ¼ m2���X=4�: ð17Þ
The average, variance and third-order moment of the total

intensity are given by

hIi ¼ Nð�1I1 þ �2I2Þ; ð18Þ

hð�IÞ2i ’ Nð�1I
2
1 þ �2I

2
2 Þ; ð19Þ

hð�IÞ3i ’ Nð�1I
3
1 þ �2I

3
2 Þ: ð20Þ

Then the formula of skewness for an overlapping reflection

should be modified according to the following formula:

S ¼ hð�IÞ3i
hð�IÞ2i3=2

’ m
1=2
eff

ðm0
effNeffÞ1=2

; ð21Þ

where m0
eff is defined by

m0
eff � ðm1I

2
1 þm2I

2
2 Þ3ðm1I

3
1 þm2I

3
2 Þ�2: ð22Þ

It is easy to derive a more generalized definition of m0
eff,

given by

m0
eff �

P
k

mkI
2
k

� �3 P
k

mkI
3
k

� ��2

: ð23Þ

Since the effect of reflection multiplicity on the skewness of

the observed intensity distribution is generally expressed by

the factor ðmeff=m
0
effÞ1=2, it will be omitted in the following

discussions about other contributions to observed diffraction

intensities.

2.1.3. Effect of Soller slits. It is assumed that the axial

(horizontal) divergence of the incident synchrotron X-ray

beam is negligible, but the orientation of a diffraction plane in

a crystallite is allowed to deviate along the axial direction, this

deviation being restricted only by the opening angle of the

Soller slits attached on the diffracted-beam side of the high-

resolution synchrotron powder diffractometer.

The dependence of the diffracted beam intensity on the

axial deviation angle  is given by

Ið Þ ¼
� ðI0=�Þð1 � j j=�Þ ½j j<��;

0 ½� 
 j j�; ð24Þ

where � is the angle determined by the ratio of the distance to

the length of metallic foils in the Soller slits.

The effective axial divergence angle �� is then given by

�� ¼ R�
��

Ið Þ d 

� �2 R�
��

½Ið Þ�2 d 

� ��1

¼ 3�=2: ð25Þ

The contribution of the Soller slits to the skewness of the

intensity distribution is formalized by introducing another

parameter, ��0, given by

��0 � R�
��

½Ið Þ�2 d 

� �3 R�0

��0

½Ið Þ�3 d 

( )�2

¼ 32�=27: ð26Þ

The effect of the Soller slit geometry on the skewness of the

observed intensity distribution is expressed by a factor of

ð��=��0Þ1=2 ¼ 9=8 ¼ 1:125.

2.1.4. Effect of equatorial resolution of the diffractometer.

The equatorial deviation of the orientation of a diffraction

plane is restricted by the fundamental resolution function,

which is affected by the spectroscopic intensity distribution,

the equatorial (vertical) divergence of the source X-ray and

the diffraction condition at the analyser crystal on the

diffracted-beam side of the high-resolution goniometer.

It is assumed that the profile of the resolution function is

modelled by the Pearson VII function given by

fP7ð!; �P7; �Þ ¼
�ð�Þ

�1=2�ð�� 1=2Þ 1 þ !2

�2
P7

� ���
; ð27Þ
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where �P7 and � are the width and shape parameters, respec-

tively. �ðxÞ is the � function defined by

�ðxÞ � R1
0

tx�1 expð�tÞ dt: ð28Þ

The full width at half-maximum (FWHM) of the Pearson VII

profile is given by wP7 ¼ 2ð21=� � 1Þ1=2�P7.

The effective equatorial divergence parameter �� for the

Pearson VII profile should be given by

�� ¼ R1
�1

fP7ð!Þ d!

� �2� R1
�1

fP7ð!Þ
� 	2

d!

��1

¼ �1=2�ð2�Þ½�ð�� 1=2Þ�2
½�ð�Þ�2�ð2�� 1=2Þ �P7: ð29Þ

In the Gaussian (�! 1) and Lorentzian (�! 1) limits, the

values of �� are reduced to ��ð�! 1Þ ¼ �1=2�P7 and

��ð�! 1Þ ¼ 2��P7.

The modified effective equatorial angle of the Pearson VII

profile is then given by

��0 �
� R1
�1

fP7ð!Þ
� 	2

d!

�3� R1
�1

fP7ð!Þ
� 	3

d!

��2

¼ �1=2½�ð3�Þ�2½�ð2�� 1=2Þ�3
½�ð2�Þ�3½�ð3�� 1=2Þ�2 �P7; ð30Þ

and the values for the Gaussian and Lorentzian limits are

��0ð�! 1Þ ¼ �1=2�P7 and ��0ð�! 1Þ ¼ 8��P7=9.

The factor ð��=��0Þ1=2 for the equatorial distribution

expressed by the Pearson VII profile is given by�
��

��0

�1=2

¼ ½�ð2�Þ�2�ð3�� 1=2Þ�ð�� 1=2Þ
½�ð2�� 1=2Þ�2�ð3�Þ�ð�Þ : ð31Þ

When the resolution function is expressed by the Gaussian

(�! 1), the skewness of the observed intensity distribution

is not changed from that of the uniform distribution, that is,

ð��=��0Þ1=2 ¼ 1. In the Lorentzian (� ¼ 1) case, the effect is

expressed by ð��=��0Þ1=2 ¼ 3=2.

2.2. Effect of absorption in capillary transmission mode

In this section, the effects of absorption in capillary trans-

mission mode upon the observed intensity distribution are

formalized.

The diffraction intensity from a crystallite in a cylindrical

specimen of linear absorption coefficient � and radius R is

given by

Ijðrj; ’jÞ ¼ I0 exp
n
�� R2 � r2

j sin2ð’j þ �Þ
� 	1=2

� � R2 � r2
j sin2ð’j � �Þ

� 	1=2
o

� exp �2�rj sin � sin ’j

 �

; ð32Þ

when the crystallite is located at the position

ðxj; yjÞ ¼ ðrj cos ’j; rj sin ’jÞ in a coordinate system with the

origin on the centre of the cylinder.

Since the overall transmittance Að�R; �Þ of a cylinder,

related to the absorption correction factor A�ð�R; �Þ as

Að�R; �Þ ¼ 1=A�ð�R; �Þ, is given by (Dwiggins, 1975)

Að�R; �Þ ¼ 2

�R2

R�=2

��=2

RR
0

r exp
n
�� R2 � r2 sin2ð’þ �Þ� 	1=2

� � R2 � r2 sin2ð’� �Þ� 	1=2
o

� expð�2�r sin � sin ’Þ dr d’; ð33Þ
the average of the kth power of the diffraction intensity from a

crystallite is generally given by

hIkj i ¼ Ik0Aðk�R; �Þ: ð34Þ
Therefore, the effective number of diffracting crystallites

Neff should be modified by the factor of

fcapð�R; �Þ ¼ Að�R; �Þ½ �2=Að2�R; �Þ; ð35Þ
the value of which lies in the range 0< fcapð�R; �Þ< 1. This

implies that the absorption by the specimen not only reduces

the irradiated volume but also causes additional variation in

measured diffraction intensities.

A modified factor given by

f 0capð�R; �Þ ¼ Að2�R; �Þ½ �3= Að3�R; �Þ½ �2 ð36Þ
is introduced in a similar way to the formulations given in x2.1.

The skewness should then be modified by the factor of

gcapð�R; �Þ ¼
fcapð�R; �Þ
f 0capð�R; �Þ

" #1=2

¼ Að3�R; �ÞAð�R; �Þ
Að2�R; �Þ½ �2 : ð37Þ

Table 1 lists the values of overall transmittance Að�R; �Þ,
and factors fcap and gcap calculated for a cylinder of �R ¼ 0:5
and diffraction angles 2� ¼ 0; 30; . . . ; 150�. The function

Að�R; �Þ can be evaluated efficiently by a method recently

developed by the author (Ida, 2010).

It should be noted that the distribution of the observed

diffraction intensities should certainly be affected by the

absorption, but the difference from the non-absorbing case is

not very large in the case of �R ¼ 0:5.

2.3. Effect of particle size distribution

It is assumed that the statistical distribution of the volume vj
of a crystallite is expressed by a probability density function

psizeðvjÞ. Since the diffraction intensity from a crystallite is

proportional to the particle volume, the probability density

function for the diffraction intensity from a crystallite is given

by
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Table 1
Overall transmittance Að�R; �Þ and modification factors fcap, gcap for a
cylinder of �R ¼ 0:5.

2� (�) 0 30 60 90 120 150

Að�R; �Þ 0.435 0.438 0.446 0.459 0.473 0.484
fcap 0.963 0.946 0.906 0.865 0.833 0.814
gcap 1.049 1.075 1.120 1.146 1.152 1.152
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pjðIjÞ ¼ ð1 � �Þ �ðIjÞ þ �
R1
0

�ðIj � IvvjÞ psizeðvjÞ dvj

¼ ð1 � �Þ �ðIjÞ þ � psizeðIj=IvÞ=Iv; ð38Þ
where Iv is the diffraction intensity per unit volume.

The statistical average, variance and third central moment

of the intensity from a crystallite are then given by

hIji ¼
R1
0

IjpjðIjÞ dIj ¼ �Ivhvji; ð39Þ

hð�IjÞ2i ¼ �I2
v hv2

j i � �ðvji2

 �

; ð40Þ

hð�IjÞ3i ¼ �I3
v hv3

j i � 3�hv2
j ihvji þ 2�2ð2 � �Þhvji3

� 	
; ð41Þ

where hvji, hv2
j i and hv3

j i are the average, squared and cubic

averages of the particle volume, respectively, which are

defined by the following common formula:

hvkj i �
R1
0

vkj psizeðvjÞ dvj: ð42Þ

The effective number of diffracting crystallites for a non-

absorbing sample is given by

Neff ¼
N�hvji2

hv2
j i � �hvji2 ’

N�hvji2

hv2
j i

; ð43Þ

where the approximation holds for small �. The above equa-

tion can be rewritten as

Neff ’
f V�hvji
hv2

j i
; ð44Þ

for the irradiated volume V and filling factor of powder f ,

because the number of particles is given by N ¼ f V=hvji. This

means that the effective number of diffracting crystallites of

any size distribution is equivalent to the case of uniform

particle volume of hv2
j i=hvji.

The filling factor f relates the linear absorption coefficients

of the powder specimen � and bulk material �0 by � ¼ f�0.

The skewness of the statistical distribution of the diffraction

intensity is given by

S ¼ hv3
j i � 3�hv2

j ihvji þ 2�2hvji3

ðN�Þ1=2 hv2
j i � �hvji2


 �3=2
’ hvi

ðN�Þ1=2hvi3=2
: ð45Þ

It is related to the effective number of diffracting crystallites

by the following equation:

S ’ hv3
j ihvji

N
1=2
eff hv2

j i2
; ð46Þ

which means that the skewness should be varied proportion-

ally to the value hv3
j ihvji=hv2

j i2, even if the effective number of

diffracting crystallites Neff is unchanged.

The density function of lognormal distribution for the

particle diameter Dj is given by

pLNðDjÞ �
1

ð2�Þ1=2!Dj

exp

�
� 1

2!2

�
ln

Dj

Dm

�2�
; ð47Þ

where Dm is the median diameter and ! is the logarithmic

standard deviation. When the particles are assumed to have

spherical shape, the average of the kth power of the particle

volume is given by

hvkj i ¼ �D3
m=6


 �k
exp 9k2!2=2


 �
: ð48Þ

The effective particle volume veff and diameter Deff for

particle statistics and the modification factor 	eff for the

skewness of intensity distributions are given by

veff � hv2
j i=hvji ¼ ð�D3

m=6Þ exp 27!2=2

 �

; ð49Þ

Deff � 6veff=�ð Þ1=3¼ Dm exp 9!2=2

 �

; ð50Þ

	eff � hv3
j ihvji=hv2

j i2 ¼ expð9!2Þ: ð51Þ
It will not be difficult to derive formulae for nonspherical

shapes and/or another model for size distribution, if an

appropriate model is available.

2.4. Combined formulae for particle statistics

Finally, the combined formulae for the effective number of

diffracting crystallites ðNeffÞcap and the skewness of the

intensity distribution Scap measured in a capillary transmission

mode are presented in this section.

The effective number of diffracting crystallites is given by

ðNeffÞcap ¼ ��eff�R
2Lhvji Að�R; �Þ½ �2

�0hv2
j iAð2�R; �Þ

; ð52Þ

where � and �0 are the linear absorption coefficients of the

powder specimen and bulk material, respectively, R is the

radius of the capillary, L is the width of the cross section of the

X-ray beam along the axial direction, and the function

Að�R; �Þ is the transmission coefficient of the capillary at the

Bragg angle �. The parameter �eff is the effective probability

that each crystallite satisfies the diffraction condition, given by

�eff ¼
meff����

8� sin �
; ð53Þ

for the effective multiplicity meff and the allowed deviation

angles along the axial and equatorial directions, �� and ��,

respectively. The formulae for meff, �� and �� have been

given in equations (14), (25) and (29). The definition of hvkj i is

given by equation (42).

The skewness of the intensity distribution is given by

Scap ¼ ðmeff����Þ1=2hv3
j ihvjiAð3�R; �ÞAð�R; �Þ

½ðNeffÞcapm
0
eff��0��0�1=2hv2

j i2½Að2�R; �Þ�2 ; ð54Þ

where m0
eff, ��0 and ��0 are the parameters given by equa-

tions (23), (26) and (30), respectively.

3. Experimental

3.1. Powder samples

Three fractions of quartz powder separated by a sedi-

mentation method were used without further grinding or
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sieving. The nominal Stokes diameters of the fractions were 3–

7, 8–12 and 18–22 mm. The crystallite size distributions of the

fractions were determined by analysis of scanning electron

microscopy (SEM) images (Ida et al., 2009). The characteristic

parameters for the optimized lognormal distributions are

listed in Table 2. The effective diameter Deff is calculated by

Deff ¼ ð6veff=�Þ1=3 from the effective particle volume veff.

Three powder samples (1, 2 and 3) with similar averages and

different degrees of dispersion about the size distribution were

prepared as controlled mixtures of the separated fractions.

The effective particle diameter Deff and modification factor

	eff ¼ hv3
j ihvji=hv2

j i2 for the mixture are calculated by

Deff ¼
P
n

wnðDmÞ3
n expð27!2

n=2Þ
� �1=3

; ð55Þ

	eff ¼
P
n

wnðDmÞ6
n expð36!2

nÞ
P
n

wnðDmÞ3
n expð27!2

n=2Þ
� �2

; ð56Þ

where wn, ðDmÞn and !n are the weight fraction, median

diameter and logarithmic standard deviation of the nth

component, respectively. The weight fractions and calculated

values of Deff and 	eff are listed in Table 3.

The three powder samples 1, 2 and 3 were filled into Lind-

emann glass capillaries with a nominal diameter of 0.5 mm.

3.2. Measurements

A high-resolution synchrotron powder diffractometer

equipped with a flat Ge(111) crystal analyser on the beamline

BL4B2 at the Photon Factory in Tsukuba was used for

diffraction measurements. The peak wavelength of the source

X-ray beam calibrated with the peak positions of a standard Si

powder (NIST SRM640c) was 1.20670 (3) Å.

The transmittance intensity profile was recorded by scan-

ning the vertical position of the capillary samples at the step

interval of 0.01 mm. The cross section of the incident beam

was restricted to be 0.05 mm along the vertical direction with

the entrance slit of the diffractometer.

The observed intensity profile IðzÞ was fitted by the

following model:

IðzÞ ¼ I1ðzÞ � I2ðzÞ; ð57Þ

I1ðzÞ ¼
�
I0 exp �2�½R2 � ðz� z0Þ2�1=2

� 
for jz� z0j<R;

I0 for R 
 jz� z0j;
ð58Þ

I2ðzÞ ¼
�

1=H for jzj<H=2;
0 for H=2 
 jzj; ð59Þ

where I0 is the intensity of the incident beam, R the radius of

the capillary, z0 the centre position and H the height of the

cross section of the incident beam, restricted by the entrance

slit.

The results of fitting for the intensity profile of sample 1 are

shown in Fig. 1, and the values of optimized parameters for the

three capillary specimens are listed in Table 4. The values of

modification factors fcap and gcap for cylindrical samples,

calculated for the 101/011 reflection of quartz at the diffraction

angle 2� = 20.625�, are also listed in Table 4.

The 2� scan peak profiles of the quartz 101/011 reflection

were recorded for capillary specimens 1, 2 and 3. The step

interval was 0.01� in 2�, and the measurement time was 0.5 s
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Table 2
Parameters of size distribution evaluated by SEM image analysis of three
fractions of quartz powder separated by a sedimentation method.

Stokes diameter (mm) 3–7 8–12 18–22

Dm (mm) 4.831 (6) 9.239 (18) 21.03 (2)
! 0.2836 (11) 0.2400 (12) 0.1937 (11)
Deff (mm) 7.0 12.0 28
	eff 2.06 1.68 1.40

Table 3
Mixing ratio and parameters of size distribution for three samples of
quartz powder.

w(3–7), w(8–12) and w(18–22) are the weight fractions of component powders
with the nominal Stokes diameter 3–7, 8–12 and 18–22 mm, respectively.

Sample 1 2 3

w(3–7) (%) 0 54.2 92.6
w(8–12) (%) 100 42.2 0
w(18–22) (%) 0 3.6 7.4
Deff (mm) 12.0 11.3 11.3
	eff 1.68 6.67 11.8

Figure 1
Intensity profile on a vertical scan of capillary specimen 1. The observed
intensities are marked by crosses, and the fitted curve is drawn as a solid
line.

Table 4
Characteristic parameters of capillary specimens.

2R is the diameter of the capillary, � is the linear absorption coefficient, and
fcap(101/011) and gcap(101/011) are the modification factors for the 101/011
reflection of quartz at the diffraction angle 2� = 20.625�.

Sample 1 2 3

2R (mm) 0.575 (1) 0.547 (1) 0.508 (1)
� (cm �1) 17.11 (9) 17.34 (8) 15.50 (8)
�R 0.492 0.474 0.394
fcap(101/011) 0.970 0.972 0.982
gcap(101/011) 1.060 1.054 1.034
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per step. The capillary specimens were continuously rotated at

a speed of 2 r s�1 during the measurements.

Five thousand peak-top intensities of the quartz 101/011

reflection were recorded for each sample on stepwise rotation

of the capillary specimens over 360� at an interval of 0.072�.

4. Results and discussions

4.1. Peak profile

Fig. 2 shows the 2� scan peak profiles of the 101/011

reflection of the quartz powder specimens 1, 2 and 3. The

observed profiles were fitted by the convolution of the

Pearson VII profile fP7ðx; �P7; �Þ shown in equation (27) and

the axial-divergence aberration function wAðx;�Þ (Ida &

Hibino, 2006). The formula of the fitting function pP7�Að2�Þ is

given by

pP7�Að2�Þ ¼ bþ IfP7ð2�� 2�; �P7; �Þ � wAð2�;�Þ; ð60Þ

wAðx; �Þ ¼
�
j
Aj�1½ð�x=
AÞ�1=2 � 1� for � 1< x=
A < 0;
0 elsewhere;

ð61Þ


A ¼ ð�2=2Þðcot 2� þ tan�AÞ; ð62Þ
where b is the constant background, I the integrated intensity

and �A the Bragg angle of the analyser crystal.

The optimized values of fitting parameters are listed in

Table 5. The smaller values of the shape parameter � for the

samples with broader size distribution may be related to the

theories (Langford et al., 2000; Popa & Balzar, 2002; Ida et al.,

2003) that predict that the intrinsic diffraction peak profile

from small crystallites becomes more ‘Lorentzian-like’ for a

more dispersed crystallite size distribution.

The effects on the equatorial intensity distribution as

calculated by equation (31) are ð��=��0Þ1=2 ¼ 1:321, 1:326

and 1:330 for samples 1, 2 and 3, respectively.

4.2. Spinner-scan data

The spinner-scan intensity profiles measured for samples 1,

2 and 3 are shown in Fig. 3. The statistical independence of the

data is supported by the lack of systematic variation in the

observed intensity profiles. Evolution of asymmetry in the

statistical distribution of the observed diffraction intensities

for samples with more dispersed particle size distribution can

be viewed directly in the profile in Fig. 3. The histograms of

the observed intensities are shown in Fig. 4.

The average, variance, third-order central moment and

skewness of the observed intensity distributions are listed in

Table 6. The errors in parentheses are estimated from the

higher-order central moments of the observed data (see

Appendix A).

The estimated relative error of the average is equal to

1=ðNNeffÞ1=2, which is expected for a Poisson distribution with

the expectation value of Neff by definition. The relative errors

of the variance estimated at 0.032, 0.040 and 0.062 for samples

1, 2 and 3 are of the same order as the value 2=N1=2 ¼ 0:028

expected for a Poisson distribution. The relative errors for the

third-order moment estimated at 0.16, 0.15 and 0.15 for

samples 1, 2 and 3 are also of the same order as the values

ð6Neff=NÞ1=2 = 0.28, 0.30 and 0.26, respectively. The resem-

blance of the observed statistics to the Poisson distribution

with the expected value of Neff suggests that the variation of

the measured diffraction intensities is certainly dominated by

the finite number of diffracting crystallites.

The effective multiplicities of the quartz 101/011 reflection

are estimated at meff ¼ 10:27 and m0
eff ¼ 8:45 from the
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Figure 2
The 2� diffraction profiles of the 101/011 reflection of quartz powder
samples (a) 1, (b) 2 and (c) 3. The observed intensities are marked by
crosses, and the fitted curves are drawn as solid lines in the lower panels.
The upper panels show the difference plots (crosses) and errors predicted
by counting statistics (grey area).

Table 5
Optimized parameters of profile fitting.

b is the constant background, I is the integrated intensity, 2� is the peak
location, and wP7 and � are the FWHM and shape parameters of the symmetric
Pearson VII function. The errors estimated for 2� and wP7 are omitted,
because they are smaller than the mechanical precision of about 0.0001�.

Sample 1 2 3

b 143 (3) 143 (4) 143 (4)
I 828 (2) 784 (2) 703 (2)
2� (�) 20.6255 20.6253 20.6248
wP7 (�) 0.0190 0.0201 0.0205
� 1.480 (9) 1.453 (9) 1.432 (10)

electronic reprint



component multiplicities m101 ¼ m011 ¼ 6 and the calculated

relative intensities of I011=I101 ¼ 2:393 obtained by the preli-

minary Rietveld analysis using RIETAN-FP developed by

Izumi & Momma (2007).

The effective crystallite diameter of sample 1 estimated at

Deff ¼ 12:0 mm by the SEM image analysis is treated as the

reference value to calibrate the instrumental constant in this

study. The effective equatorial tolerance angle is estimated at

�X = 0.061 (2)� from the effective number of diffracting

crystallites Neff ¼ 62 (3) evaluated from the spinner-scan data,

assuming �R ¼ 0:492, R ¼ 0:288 mm, ½Að�R; �Þ�2=Að2�R;

�Þ ¼ 0:970, �=�0 ¼ 17:11=48:49 ¼ 0:3529, L ¼ 10 mm and

�� = 1.5�

The effective diameters of samples 2 and 3 listed in Table 6

are evaluated from the observed average and variance of the

spinner-scan data and the instrumental constants. The values

coincide with those estimated from the SEM image analysis

listed in Table 3 within the estimated experimental errors.

The crystallite size dispersion parameters 	eff evaluated for

samples 1, 2 and 3 by statistical analysis of the observed

spinner-scan data are listed in the last row of Table 6. Good

agreement with the values estimated by the SEM image

analysis have been found, except that the value of 	eff deter-

mined for sample 1 by the spinner-scan method is slightly

larger than that predicted by the SEM image analysis.

The relative errors of the skewness estimated for samples 1,

2 and 3 are 0.16, 0.16 and 0.17, while those predicted for the

Poisson case (see Appendix A4) for N ¼ 5000 are about 0.3.

The area-weighted average diameter defined by

hDiA � hD3i=hD2i can be connected with the experimentally

obtained values of Deff and 	eff by the equation

hDiA ¼ Deff	
�2=9
eff , when the lognormal distribution is assumed.

The values of hDiA for samples 1, 2 and 3 are then estimated at

9.5 (8), 7.2 (7) and 6.2 (8) mm, while the values calculated from

the mixing ratios wj and the parameters Dm and ! for each
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Figure 4
The histograms of the 101/011 reflection intensity distribution of quartz
powder samples (a) 1, (b) 2 and (c) 3.

Table 6
Characteristics of spinner-scan data.

The value of the effective diameter Deff of sample 1 estimated by SEM image
analysis is treated as the reference to determine the instrumental constant.

Sample 1 2 3

hI i 28370 (50) 25430 (40) 22380 (40)
hð�IÞ2i 1.29 (4) � 107 8.7 (4) � 106 8.8 (5) � 106

hð�IÞ3i 2.6 (4) � 1010 3.1 (5) � 1010 7.5 (11) � 1010

S 0.56 (9) 1.22 (19) 2.9 (5)
Neff 62 (3) 74 (5) 56 (6)
Deff (mm) 12.0 (fixed) 11.0 (7) 11.1 (1.2)
	eff 2.8 (5) 6.7 (1.0) 14 (2)

Figure 3
The spinner-scan profiles of the 101/011 reflection of quartz powder
samples (a) 1, (b) 2 and (c) 3. The observed intensities are drawn as solid
lines.
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fraction determined from the SEM image analysis are 10.7, 7.5

and 6.3 mm.

5. Conclusion

Observed powder diffraction intensities are considered to be

the multiple convolution of the diffraction from each crystal-

lite. Quantitative descriptions of the statistical properties of

the observed intensities have been derived on the basis of the

additivity of cumulants with respect to convolution.

Practical formulae for the particle statistics of capillary

specimens in synchrotron powder diffractometry are

presented. The skewness of the observed intensity distribution

is predominantly affected by a size dispersion parameter,

which can be connected with the broadness of the crystallite

size distribution.

The errors in the experimentally estimated skewness were

evaluated by utilizing the sample central moments up to sixth

order. The experimental values of skewness evaluated from

collections of diffraction intensity data measured by a spinner-

scan method agree well with the values predicted from the

results of SEM image analysis.

APPENDIX A
Estimation of cumulants up to the third order

A1. Cumulants

The kth-order cumulant 	k for a probability density func-

tion pðxÞ is defined by

	k � lim
�!0

@k

@�k
ln
R1

�1
expð�xÞ pðxÞ dx; ð63Þ

while the kth-order central moment �	 is defined by

�k �
R1

�1
ðx� xÞkpðxÞ dx; ð64Þ

where x is the average given by

x � R1
�1

x pðxÞ dx: ð65Þ

The first, second and third-order cumulants are equivalent

to the mean x, the variance �2 and the third-order central

moment �3, that is, 	1 ¼ x, 	2 ¼ �2 ¼ �2, 	3 ¼ �3. The

cumulants from the fourth to sixth order are related to the

central moments �k by 	4 ¼ �4 � 3�2
2, 	5 ¼ �5 � 10�3�2 and

	6 ¼ �6 � 15�4�2 � 10�2
3 þ 30�3

2.

A2. Unbiased estimation

Consider N independent sample data fXjg ( j = 0, . . . , N� 1)

about a stochastic variable with the mean x, variance �2 and

third-order cumulant 	3. The sample average is defined by

X � N�1
PN�1

j¼0

Xj; ð66Þ

and the expected value of X coincides with the true mean

value, that is, hXi ¼ x.

The unbiased estimation of the variance is given by

V ¼ NðN � 1Þ�1M2; ð67Þ
where Mk is the kth-order sample central moment defined by

Mk � N�1
PN�1

j¼0

ðXj � XÞk: ð68Þ

Note that the above formula for the unbiased sample variance

is determined to satisfy that the expected value of V should be

equal to �2, that is, hVi ¼ �2.

The unbiased estimation of the third-order cumulant is

similarly given by

T ¼ N2ðN � 1Þ�1ðN � 2Þ�1
M3; ð69Þ

so that hTi ¼ 	3.

A3. Errors in estimation of statistical parameters

The statistical variance of the sample average X is given by

ð�XÞ2 � hðX � xÞ2i ¼ �2=N ’ M2=N: ð70Þ
The statistical variance about the unbiased sample variance

V calculated by equation (67) can be estimated as the

expected value of the squared difference of V from the true

variance �2, which is approximated by

ð�VÞ2 � hðV � �2Þ2i ’ ðM4 �M2
2Þ=N: ð71Þ

The statistical variance of the unbiased third-order cumu-

lant T calculated by equation (69) is similarly approximated

by

ð�TÞ2 � hðT � 	3Þ2i
’ ðM6 � 6M4M2 �M2

3 þ 9M3
2Þ=N: ð72Þ

The variance in the estimation of the skewness S ¼ T=V3=2

is formally given by

ð�SÞ2 ’ T2

V3

��
�T

T

�2

þ 3

2

�
�V

V

�2�
; ð73Þ

when the correlation between the variance and third-order

cumulant is neglected. Even though there should be some

correlation between V and T, the value of �S calculated by

the above equation will still be a measure of the error in

estimation of the skewness S, because the relative error �T=T
will be much larger than �V=V.

A4. Poisson case

Since all of the cumulants of the Poisson distribution are

equal to the expected value of the stochastic variable, the

errors in estimations of the average, variance and third-order

cumulant for the Poisson distribution for the expected value of

Neff will be approximated by

�X ’ ðNeff=NÞ1=2; ð74Þ

research papers

J. Appl. Cryst. (2011). 44, 911–920 T. Ida 	 Particle statistics of a capillary specimen 919
electronic reprint



�V ’ Neff þ 4N2
eff


 �
=N

� 	1=2
; ð75Þ

�T ’ Neff þ 18N2
eff þ 6N3

eff


 �
=N

� 	1=2
: ð76Þ

When Neff is sufficiently large, the relative errors for X, V, T

and the skewness S can be further approximated by

�X=X ’ 1=ðNNeffÞ1=2, �V=V ’ 2=N1=2 and �T=T ’
�S=S ’ ð6Neff=NÞ1=2.

This work has been performed under the approval of the

Photon Factory Program Advisory Committee (proposal No.

2009G131).
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