Determination of crystal structure of tetragonal PbFeO₂F

Tetsuhiro Katsumata^{1*}, Yoshiyuki Inguma¹, Takashi Ida², Takao Turui³ ¹Gakushuin Univ., 1-5-1 Mejiro,Toshima-ku, Tokyo 155-0031, Japan

²Ceramics Research Laboratory, Nagoya Institute of Technology, Asahigaoka, Tajimi 507-0071, Japan

³Institute of Material Research, Tohoku University, Katahira, 2-1-1, Aoba-ku, Sedai, 980-8577, Japan

Introduction

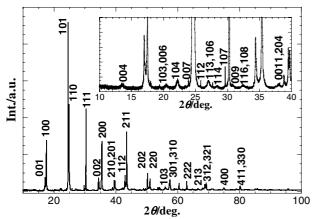
Multi-ferroic materials, in which the ferroelectricity and ferromagnetism are present, have received renewed interest in recent years. The perovskite-type oxyfluoride, PbFeO₂F is considered to be a candidate multiferroic material, because this compound includes A-site ion having a 6s lone pair and a 3d transition metal ion as Bsite ion. Our group has been interested in this compound and investigated the structure and properties.^{1,}

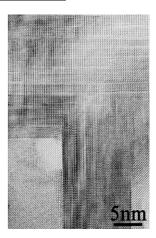
PbFeO₂F was synthesized under high pressure and high temperature.³ The structure is a cubic perovskite-type structure in which the Pb ion shifts from the ideal A-site position along the twelve <110> directions.¹ The magnetic structure is G-type antiferromagnetic and the Neel temperature is 655(5) K.² Furthermore, it was revealed that the cubic PbFeO₂F transforms to the tetragonal structure by annealing at 523-573 K and this tetragonal PbFeO₂F was found to undergo a reversible phase transition to cubic in the vicinity of 475 K.² However, the crystal structure of the tetragonal PbFeO₂F has not been cleared yet.

Here, we performed the synchrotron X-ray powder diffraction and the electron diffraction for the tetragonal PbFeO₂F and tried to determine its crystal structure.

Experimental

Cubic PbFeO₂F was synthesized under high pressure and high temperature. PbF₂, PbO, Fe₂O₃ TiO₂ were used as starting materials. Well ground mixtures of these materials were dried by evacuating at approximately 200 °C for one night. The mixed powders were reacted at 4-6 GPa and 1000 °C for 30 min. The tetragonal PbFeO₂F is




Figure 1 X-ray diffraction pattern for tetragonal PbFeO₂F. The peaks in the main figure and inset were indexed by $a \times a \times c$ and $a \times a \times 5c$ cells, respectively.

prepared by annealing the cubic PbFeO₂F at 573 K for 3 weeks under Ar atmosphere. Synchrotron X-ray powder diffraction data were collected using the multi-detector system installed at the beam line BL-4B of Photon Factory, KEK, Tsukuba. The wave length was determined to be $\lambda = 1.206278(7)$ Å. The HRTEM observation was performed with a JEOL JEM-4000EX microscope.

Results and discussion

Figure 1 shows the Xray diffraction patterns for the tetragonal PbFeO₂F. Note that the many weak peaks were observed, as shown in the inset of figure 1. These peaks disappeared above 475 K with the structural change, thus these are considered to be related to a super structure of the tetragonal phase.

To determine the unit cell of the tetragonal PbFeO₂F, the HRTEM observation and the electron diffraction were carried out. Figure 2 shows the HRTEM image and the electron diffraction pattern for the tetragonal PbFeO₂F. As shown in the upper figure, the 5×1 superstructure and 90° oriented domain were observed. In the diffraction electron pattern, the $(0 \ 0 \ 1/5)$ reflections superlattice

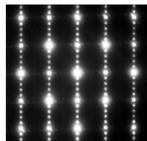


Figure 2 An HRTEM image and the electron diffraction pattern for tetragonal PbFeO₂F.

were clearly observed. Therefore, the tetragonal PbFeO₂F is found to have $a \times a \times 5c$ super structure. In fact, the weak X-ray peaks could be indexed on the $a \times a \times 5c$ multiple cell. The determination of the crystal structure is in progress now.

References

[1] Y. Inaguma et al., Chem. Mater. 17, 1386, (2005).

- [2] T. Katsumata et al., Mater. Res. Soc. Symp. Proc. 988, 0988QQ06-03, (2006).
- [3] I. O. Troyanchuk et al., *Inorg. Mater.*, **30**, 920, (1994).

*e-mail:20001996@gakushuin.ac.jp