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Abstract. A new method for analysis of powder diffraction intensity data recently developed by the 
author has been modified to include the effects of possible statistical errors in the goniometer angle 
2Θ.  The analytical method is based on the maximum-likelihood estimation.  Structure parameters 
refined by the method for fluorapatite Ca5(PO4)3F, anglesite PbSO4 and barite BaSO4 have become 
closer to those obtained by single-crystal structure analyses than the results obtained by applications 
of a conventional Rietveld refinement to the same powder diffraction data, similarly to the previous 
analyses, where the errors in 2Θ are not included.  The statistical errors about 2Θ are estimated at 
Δ2Θ = 0.0030º,  0.00099º and 0.0036º from the powder diffraction data sets of fluoroapatite, 
anglesite and barite, respectively.   

Introduction 

The Rietveld analysis is an application of the least-squares method to powder diffraction 
intensity data based on a crystallographic structure model.  In principle, errors in optimized 
crystallographic parameters, such as lattice constants, atomic coordinates, site occupancy, atomic 
displacement parameters etc could be evaluated by the method, provided that the experimental 
errors are known quantities.   

However, we often encounter too small errors in the parameters optimized by the Rietveld 
analysis on powder X-ray diffraction data, particularly in the cases: strong x-ray source, long 
measurement time, high-resolution optics, high-sensitivity detectors, samples with high crystallinity 
and large scattering cross section.  This problem is simply ascribed to the under-estimation of the 
experimental errors, and the solution should simply be the use of appropriate values for the 
assumptions of the statistical errors as the input to Rietveld programs. 

It is well known that the statistical errors in the observed powder diffraction intensity data are 
caused by counting statistics and particle statistics [1,2].  Recently, the author has developed a new 
analytical method based on the maximum-likelihood estimation (MLE) method [3], where a model 
for statistical errors including counting, particle and proportional uncertainties is optimized.  In this 
study, the author has extended the new methodology to examine the effects of possible errors in the 
goniometer angle 2Θ. 

Theory 

Powder X-ray diffraction intensities   {Yj} observed at diffraction (goniometer) angles   {2Θ j}  are 
supposed to be normally distributed around the values calculated by an appropriate model   y(2Θ j )  
with statistical errors   {σ j} .  Then the probability that this data set should be realized is given by 
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where   Δ j ≡ Yj − y(2Θ j )  is the deviation of the observed intensity from the caluculated value.  
Maximum-likelihood estimation (MLE), which means the maximization of the probability P, is 
exactly equivalent to the minimization of the unlikelihood estimator U, defined by 
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The total statistical variance   σ j

2  is modeled by the sum of the variance caused by counting statistics 

  (σ c ) j
2  and particle statistics   (σ p ) j

2  in powder diffractometry [1,2], and the term for errors 

proportional to the observed intensity   (σ r ) j
2  suggested by Toraya [4,5], and another term 

propagated from statistical variance about 2Θ angle   (σ 2Θ ) j
2 , that is,  
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The variance caused by counting statistics   (σ c ) j
2  is approximated by the expected value of the 

number of observed X-ray photons, 
 
   (σ c ) j

2 = y(2Θ j ) . (4) 
 

The variance caused by particle statistics   (σ p ) j
2  at the diffraction angle   2Θ j  for the symmetric 

reflection (Bragg-Brentano) geometry is formulated by [1,3] 
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where   Cp  is an unknown proportionality factor and  bj  is the background intensity.  The effective 
multiplicity   (meff ) j  is defined for overlapped reflections with the component intensity   yk (2Θ j )  by 
the following equation [6]: 
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The term for errors proportional to the intensities are formulated by 
 
   (σ r ) j

2 = Cr[y(2Θ j )]2 , (7) 
 

where   Cr  is another unknown proportionality factor.  Finally, the term propagated from statistical 
variance about 2Θ angle   (σ 2Θ ) j

2  is given by  
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where  Δ2Θ  is the statistical error about the goniometer angle 2Θ, and the derivative is 
approximated by the finite difference: 
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in this study.   

Analytical procedures 

The following procedures are applied to structure refinement, similarly to the procedures the author 
has already reported [3], except that another unknown parameter Δ2Θ is additionally included in 
this study.   
(i) A conventional Rietveld refinement is applied to powder diffraction data, with initial statistical 

errors of   σ j = Yj
1/2 . 

(ii) An individual diffraction peak profile   yk (2Θ j )  is extracted on the final calculation of the 
optimized diffraction intensity in the Rietveld analysis.  Then the effective multiplicity at each 
data point is calculated by Eq. 6. 

(iii) The three-dimensional unlikelihood function   U (Cp ,Cr ,Δ2Θ)  is minimized by a downhill 
simplex (Nelder-Mead) algorithm [7].   

(iv) A further Rietveld refinement is carried out with the statistical error  σ j  calculated by Eq. 3 at 
each data point, and then steps (ii)–(iv) are repeated until convergence.  

Applications to X-ray powder diffraction data 
The results of Rietveld analysis and the new analytical method based on the maximum likelihood 

estimation upon fluorapatite Ca5(PO4)3F, anglesite PbSO4 and barite BaSO4, measured with 
Bragg-Brentano diffractometers, are demonstrated in this section.  The Rietveld analysis program 
RIETAN-FP (version 2.13) developed by Izumi and Momma [8] was used for all the Rietveld 
refinements.  The scale factor, a constant peak-shift parameter, a ninth-order polynomial for the 
background intensity, and the profile parameters of a split pseudo-Voigt function [9] were 
optimized during the structure refinements.  The peak profile cut-off range was extended to 28 
times of the full-width at half maximum (FWHM), while it was 14 times of the FWHM in the 
previous analyses [3].  Correction for preferred orientation or surface roughness was not applied. 

 
Fluorapatite, Ca5(PO4)3F.  CuKα X-ray powder diffraction data of fluorapatite, Ca5(PO4)3F, were 
originally attached to the DBWS Rietveld program package [10], and are currently available as an 
example data set in the RIETAN-FP package [8].  The space group of  fluorapatite is P63/m (No. 
176).  The statistical error in the goniometer angle was estimated at Δ2Θ = 0.0030º at the final 
refinement, which causes considerable contribution of   (σ 2Θ ) j  as shown in Fig. 1.  Figure 2 plots the 
difference in atomic coordinates between the structure refinements from the powder and 
single-crystal diffraction data [3,11].  The optimized atomic coordinates are almost unchanged from 
the previous results without the term   (σ 2Θ ) j

2  [3], and show better coincidence with the single crystal 
data than the results of the Rietveld method. 
 



 

 
Fig. 1  Total statistical errors  σ total  and 
component errors  σ 2Θ ,  σ c ,  σ r  and  σ p , 
estimated for a data set of fluorapatite by the 
maximum likelihood estimation. 
 

 
Fig. 2  Difference in atomic coordinates of 
fluorapatite optimized by the Rietveld method 
(triangles) and the new analytical method based 
on the maximum-likelihood estimation 
(circles). 

 
Anglesite, PbSO4.  CuKα X-ray powder diffraction data of anglesite, PbSO4, supplied for a 
Rietveld refinement round robin [12], were reanalyzed in this study.  The data are available as an 
example file in the FullProf package developed by Rodríguez-Carvajal [13].  The space group of 
anglesite is Pnma (No. 62).  The statistical error in the goniometer angle was estimated at Δ2Θ = 
0.0099º at the final refinement.  The estimated total and component errors are shown in Fig. 3.  The 
difference in atomic coordinates between the structure refinements from the powder and 
single-crystal diffraction data reported by Miyake et al. [14] are plotted in Fig. 4.  The structure 
optimized by the Rietveld method is well coincided with the single-crystal data, and almost 
unchanged by the new analytical method.   
 
Barite, BaSO4. CuKα1 X-ray powder diffraction data of barite, BaSO4, are available as an example 
data set in the RIETAN-FP package [8].  The space group of barite is Pnma (No. 62) and 
isostructural to anglesite.  The statistical error in the goniometer angle was estimated at Δ2Θ = 
0.0036º at the final refinement.  The estimated total and component errors are shown in Fig. 5.  It is 
suggested that the effect of particle statistics is dominant on the statistical properties of this 
observed diffraction intensity data set. It is possibly caused by the lower probability to satisfy the 
diffraction condition by the use of monochromated X-ray source. The difference in atomic 
coordinates between the structure refinements from the powder and single-crystal diffraction data 
reported by Miyake et al. [14] are plotted in Fig. 6.  Coincidence with the single crystal data is 
significantly improved by application of the MLE method based on the statistical model including 
particle statistics. 
 
 



 

 
Fig. 3  Total statistical errors  σ total  and 
component errors  σ 2Θ ,  σ c ,  σ r  and  σ p , 
estimated for a data set of anglesite by the 
maximum likelihood estimation. 
 

 
Fig. 4  Difference in atomic coordinates of 
anglesite optimized by the Rietveld method 
(triangles) and the new analytical method based 
on the maximum-likelihood estimation 
(circles). 

 
Fig. 5  Total statistical errors  σ total  and 
component errors  σ 2Θ ,  σ c ,  σ r  and  σ p , 
estimated for a data set of barite by the 
maximum likelihood estimation. 
 

 
 

 
Fig. 6  Difference in atomic coordinates of 
barite optimized by the Rietveld method 
(triangles) and the new analytical method based 
on the maximum-likelihood estimation (circles)

 

Conclusions 
A new methodology for structure refinement from powder X-ray diffraction data based on the 
maximum-likelihood estimation, recently developed by the author, has been extended to examine 
the possible contribution of the errors in the goniometer angle 2Θ.  The errors in the goniometer 
angles are estimated at Δ2Θ = 0.0030, 0.0099 and 0.0036º from the powder X-ray diffraction data 
sets of fluorapatite, anglesite and barite, respectively.   
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