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Abstract. We have used the Born model to calculate the energy of vacancies and ion 
interstitials in calcium fluoride. We have calculated the energy of inert gas interstitials 
and the activation energy for gas diffusion. Values for the binding energy of the gas 
into vacancies suggest that there may be a slight modification of the diffusion due to gas 
trapping. All the calculations were performed by minimizing the energy with respect to 
the displacements and dipoles of ions in a relatively large region (15-20 shells) surround- 
ing the defect. A new numerical method used in the calculation of the relaxation is ten 
or twenty times faster than conventional minimization methods. 

1. Introduction 
Norgett and Lidiard (1968) successfully calculated the activation energies for the migra- 

tion of inert gas atoms in the alkali halides by using the Born model for the ionic crystal and 
by postulating reasonable forms for the unknown ion-inert gas interaction. Their interpre- 
tation emphasized the importance of the trapping of the inert gas into vacancies. At low 
temperature, the occurrence of these vacancies is a consequence of the neutron irradiation 
used to generate the inert gas. At higher temperatures, the concentration of Schottky 
vacancies in the alkali halides at thermal equilibrium is sufficient to modify the observed 
diffusion. The importance of trapping means that it is possible to make certain definite 
predictions about the effect of doping the crystal with divalent cations, which alters the 
vacancy concentration. These predictions have been confirmed by recent experiments of 
Felix and Muller (1970, private communication) who also demonstrated that doping the 
crystal has related effects on the electrical conductivity and rare gas diffusion in certain 
alkali halides. 

In part, the motivation for both the experimental and theoretical study of inert gas 
diffusion in ionic solids is the technological importance of the release of fission gas from 
ceramic nuclear fuels. The alkali halides are studied as models of the uranium carbide 
system while the alkali earth fluorides are perhaps more realistic models for uranium 
dioxide. 

Norgett and Lidiard (1969) have previously reported preliminary calculations for the 
alkaline earth-inert gas systems CaF,/Ar, SrF,/Kr and BaF,,’Xe. Unfortunately, these 
were based on an incorrect potential for the ionic crystals contained in unpublished work 
of Birtwistle (1967). Even if these errors are corrected, it seems that there is no straight- 
forward way of deriving a satisfactory interaction potential of the simple Born-Mayer 
type for this class of materials. Thus, while Benson and Dempsey (1962) have used the 
properties of all the alkaline earth fluorides to obtain a set of ionic‘radii for use in a simple 
exponential repulsive potential, Franklin (1968) has found that a more rigorous attempt 
to fit parameters to the elastic constants of each fluoride separately leads to certain diffi- 
culties. In particular, the fluoride-fluoride interactions, which should, in the spirit of the 
Born model, be equal, in fact vary considerably and are even attractive for BaF,. We 
have confirmed Franklin’s observations and extended his work by including Van der Waals 
interactions between the ions but the same difficulties remain. 

However, for CaF, there is a reasonably convincing description of the ionic interactions 
in terms of a Born model. Also, Franklin (1968) has calculated the energies of vacancies 
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and interstitial defects for this substance with considerable success, even though the calcu- 
lations employ only restricted explicit relaxations of ions about the defect. In consequence, 
we report a set of results calculated for CaF, alone. We have calculated the various energies 
of the argon interstitial needed to predict the diffusion of the inert gas atom. We have 
calculated the energy of the anion and cation vacancy allowing extensive relaxation of the 
crystal about the defect. In addition, we have computed the binding energies of the inert 
gas into each vacancy. Finally, in order to estimate the energies of the intrinsic Schottky 
and Frenkel defects, we have calculated the energies of the interstitial ions of both types. 

The calculation of the relaxation and polarization about the defect is a lengthy computa- 
tion if normal minimization procedures are applied to calculate the configuration of the 
crystal corresponding to the lowest energy. We have developed a method based on the 
use of a restricted response matrix for the crystal. This is used as a starting point for an 
iterative minimization procedure which employs the principle of the variable metric 
algorithm developed by Fletcher and Powell (1963). In this way the computation time 
for these relaxation calculations is reduced by a factor of between ten and twenty compared 
to more usual methods. The calculated activation energies for inert gas migration agree 
reasonably well with the results of Felix (1970). Also the Schottky and Frenkel energies 
are similar to the values calculated by Franklin (1968) and both results agree reasonably 
well with the experimental value of the Frenkel energy measured by Ure (1957). 

2. Calculation 
In all these calculations, the approach is to consider explicitly some limited region about 

the defect. The ions interact by Coulomb forces and in addition at short distances, repel 
each other because of the overlap of their electronic charge clouds. Van der Waals interac- 
tions are also included. In addition, a point dipole is associated with each ion. The dis- 
placements and dipoles of each ion in the region are treated as independent variables in 
the minimization scheme. The lattice symmetry about the defect is preserved. 

If the defect has no net charge (e.g. the inert gas interstitial) then the distorted region 
(region I) is surrounded by an infinite region of perfect crystal. The fact that the defect is 
an elastic singularity which causes distortions of the crystal which fall off only slowly 
away from the defect is ignored. The repulsive interactions, being short range, are calclated 
explicitly as a function of the displacements and the formation energy of the defects only 
involves ions in region I and its immediate environment. The long range Coulomb inter- 
actions are best expressed as a contribution arising from the interaction of each displaced 
ion in region I with a perfect lattice, calculated by Ewald’s method, and the interactions 
of ions and compensating charges of opposite sign in the distorted region. 

For the charged defects, the region outside the immediate neighbourhood of the defect 
is treated in the approximation of Mott and Littleton (1938) using a method of calculation 
due to Boswarva and Lidiard (1967). Boswarva and Lidiard divided the crystal into two 
regions, as we do. Then they expressed the energy in four parts, the formation energy of 
the defect in a rigid lattice, the relaxation energy of region I, the interaction of the two 
regions and the relaxation of the outer region 11. Using X and M to denote coordinates 
and dipoles in region I and t and ,D to apply in the same way to the outer region, then 

If the outer region is treated only in second order, then at equilibrium 
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Then the energy can be written 

This expression involves only interactions in which at least one ion is in region I, but the 
summations still extend over all ions in region 11. These summations are treated in two 
ways. The sum corresponding to the Coulomb interaction of the defect with the displace- 
ments and dipoles in region 11, calculated in the Mott-Littleton approximation, converges 
only slowly (as ljr4). For these terms, the appropriate summations calculated analytically 
by Jones and Ingham (1925) and quoted by Mott and Littleton, are used. The repulsive 
interactions, on the other hand, and also the interactions of region I1 with the displaced 
ions and dipoles close to the defect, are negligible except for those ions bordering region I. 
These contributions to the energy can thus be calculated explicitly. Thus we have calculated 
these interactions for a group of ions, region 11', in close proximity to region I, which is 
treated explicitly. In all the calculations we have varied the size of both regions and com- 
puted the defect energy to observe how it depends on the sizes of the regions chosen. 

We make a slightly different approximation to that used by Boswarva and Lidiard (1967) 
in minimizing the energy. Now the last two terms in equation (2.3) involve X and M ,  the 
displacements and dipoles in region I, through the derivatives of W,. Boswarva and Lidiard 
include these in the energy function which is used in the calculation of the optimum dis- 
placements and dipoles in region I. However, these latter terms are in fact equal to W4((, p), 
which does not depend explicitly on X and M ,  so we exclude them from the minimization. 
There is no difference in the methods if the Mott-Littleton description of region I1 is 
completely accurate. In fact we find that the two methods do give essentially identical 
results. Our choice allows a considerable simplification in the computation when we use 
our particular minimization method. 

The two succeeding sections deal with the choice of the potential describing the ionic 
interactions and the method of minimization. 

2.1 The potentials 
Table 1 contains the values of various dielectric and elastic constants for CaF2. The 

dielectric constant is required for calculating the displacements in the region described 
by the Mott-Littleton formulae. 

Table 1. Properties of calcium fluoride 

Anion-anion distance r,, = 2.718 A 

Anion electronic polarizability LY - = 0.759 A3 

Cation electronic polarizability U, = 0,979 A3 
Static dielectric constant eo = 6.7 
High frequency dielectric constant E ,  = 2.045 

Elastic constants C,, = 17.4 x 1011 dyn cmW2 
C I 2  = 5.6 x 10" dyn cm-' 
C44 = 3.59 x 10" dyn cm-2  

+Batchelder and Simmons (1964) at 6 K) 

-(Tessman et al. (1953)) 

-(calculated from LY- and E,)  

+Kaiser et  al. (1962)) 

+Hoffman and Norwood (1960)). 

The repulsive interactions are deduced using the equilibrium equation, the value of the 
compressibility and the difference in C,, and C12. The repulsive and Van der Waals 
interactions are considered to act only between nearest anion-cation and next nearest 
anion-anion neighbours. This restriction is also imposed in the calculation of the energies 
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of the various defects. The Van der Waals constants used are those calculated by Benson 
and Dempsey (1962). They appear, together with the repulsive parameters employed, in 
table 2. 

Of various expressions for the elastic constants found in the literature, those of Srinivasen 
(1958) contain an error in the formula for Cl2. This was corrected by Rajagopal (1962). 

Table 2. Repulsive and Van der Waals parameters for CaFJAr 

1. Repulsive parameters 
A +  + = 10460.0 eV 
A +  - = 2914.0 eV 
A - -  = 721.3 eV 
p i +  = p + -  = p - -  = 0,2705A 

Abrahamson 
A + ,  = 8534.0 eV 
A - ,  = 2241.0 eV 
p+ ,  = p - o  = 0,2731 A 

2. Van der Waals parameters 
C + +  = 44.23 x IO-12 ergA6 
C+-  = 18.06 x 10-12ergA6 
C- -  = 9.51 x erg A6 
c+, = 43.59 x erg A6 
C-, = 21.10 x 1 0 - l ~  ergA6 

Fumi-Tosi 
A + ,  = 4213.0 eV 
A - ,  = 1106.0eV 
p+,  = p - ,  = 0.3011 A 

D,, = 94.5 x 10-12ergA8 
D, - = 24.6 x erg A8 
D -  - = 5.63 x erg.!%’ 
D+, = 78.74 x lO-”erg A* 
D-, = 2141 x 10-”ergA8 

The expressions of Reitz et al. (1961) for CI1 and C1, are essentially correct but we have 
used the expressions given by Axe (1965) which employ more accurate values of the Coulomb 
sums. The three equations are solved to obtain values of the parameters A ,  -, A -  - and p.  
These are used in the normal Born-Mayer exponential form of the interionic repulsive 
potential 

4 . .  1J = A , ~  exp (z). (2.1.1) 

Franklin (1968) has collected various values of the parameters for the repulsive interactions 
in CaF, and our results are quite consistent with the other values from various sources. 

In estimating the ion-gas interaction we have followed our previous approach used 
successfully for the alkali halides. We have estimated the gas-gas interaction in two ways. 
Firstly we have used the potentials of Abrahamson (1964) based on his Thomas-Fermi- 
Dirac calculations. Abrahamson (1969) has recently expressed the results of these calcula- 
tions in an exponential Born-Mayer form. Alternatively we have used a potential based 
on an analysis by Fumi and Tosi (1964) of repulsive interactions for the alkali halides. 
Their expression for the interaction between ions i and j is 

{ (ri + - r ) ]  eV, I$,~ = 0.159 Cij exp (2.1.2) 

Here ri is the ionic radius and Cij the Pauling factor which takes into account the dependence 
of the potential on the charge 2, and number of electrons n, in the outer shell of the ith ion 

2, zj C . . = l + - + - .  
EJ n, n j  

(2.1.3) 

For the Ar-Ar interaction, we have used this expression taking the mean of the radii of 

The gas-ion interaction is taken as the geometric mean of the appropriate ion-ion and 
the isoelectronic ions K +  and C1- as the appropriate radius for Ar. 
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gas-gas interactions so that if the exponential form (equation(2.1.1)) is used for 4ii and 
4Jj, then 4ij has the same exponential dependence on r and 

1 
P i j  

(2.1.4) 

To find the gas-cation potential, we need to know the cation-cation interaction which 
cannot reasonably be obtained from an analysis of the elastic properties of the crystal. A 
value of A +  + was therefore deduced from A + - and A -  -, again by use of the geometric 
mean rule but with a small modification to take account of the Pauling factors 

(2.1.5) 

2.2. The numerical minimization method 
The calculation of the energy of even a limited region of a distorted and polarized 

crystal is a lengthy computation involving a summation over all pairs of ions. The usual 
minimization procedures, requiring repeated linear searches, involve repeated calculation 
of the energy and are very inefficient. 

We have developed a method which markedly shortens the calculation. When minimizing 
the energy of a lattice of interacting ions, it is advantageous to use methods employing 
both first and second derivatives of the energy. Thus if the energy of N ions is expressed 
in terms of a potential +(vi - vj) acting between pairs of ions at vi and ri  then 

N 

i ,  j 
E = 4(r i  - vj). 

The gradient involves only a single summation 

84 
~ ( V i  - V j )  axi gi = 

and the second derivatives only one interaction if i + j 

(2.2.1) 

(2.2.2) 

(2.2.3) 

All the derivatives gi and second derivatives Wij  may be calculated in a summation that 
ranges only once over each ion pair. 

We now denote the vector containing the derivatives of the energy with respect to each 
independent coordinate by g and let W be the approximate matrix of second derivatives. 
If E is expanded to second order in the displacement vector 6, then 

E(6)  = Eo + g.6 + i d T .  W.6 (2.3.4) 
and the obvious step to reduce the value of E is 

6 = - w-1.g.  (2.3.5) 

The usual procedure would be to calculate W-' and g at some initial estimate of the 
minimum yo, obtain 6 and recalculate W- ' andg at the improved estimate of the minimum. 
An alternative approach is to use a technique of improving the current value of H = W-'  
using only the values of the gradient. This technique has been discussed in a slightly 
different context by Fletcher (1969) who considers a number of formulae which may be used 
to update H at each iteration. We employ the most usual expression, equation (2.3.6). 
Then the sequence of the iteration is (i), calculate g, and HI at some initial estimate of the 
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minimum r1 ; (ii), calculate 6, = - H, .gl and r 2  = r1 + 6 ,  ; (iii), recalculate g, at the 
new coordinates r ,  ; (iv), update the current version of H 

(v), recalculate a2 = - H,.g,, etc. 
This method of calculation is particularly suited to our type of relaxation calculation. 

The obvious initial estimate for the coordinates has each ion at its lattice site and each 
dipole zero. Then the matrix W of second derivatives is easily calculated and the inverse 
is the quadratic response function for a limited region of the crystal about the defect. 
The forces arise only from the defects in the crystal. 

The calculation of the matrix H for any other configuration of the crystal is very tedious 
but this step is eliminated if the gradients of the energy, that is the forces, are used to correct 
the matrix after each iteration. 

One difficulty can arise in the treatment of charged defects, when the initial iteration 
may give spurious results due to a polarization catastrophe. The energy of the defect 
system may be divided into the relaxation energy of the distorted crystal about the defect 
together with the interaction energy of the defect and the surrounding ions. If the energy 
of the crystal is expanded about the undistorted configuration, all the first derivatives of 
the first term are zero while the inverse of the matrix of the second derivatives is positive 
definite. The first derivatives of the interaction with the defect correspond to the forces 
acting on the undisplaced ions. However a consistent use of Newton's method requires 
that we include the second derivatives of the defect-lattice interaction in calculating the 
response function W- '. However, large Coulomb contributions to this term may cause the 
matrix W- to become negative definite. Physically this corresponds to the immediate 
neighbours of the defect relaxing inwards towards the vacancy, attracted because of the 
unlimited and unphysical increase in polarization energy that is allowed in the model. 
This problem is avoided by simply omitting these dangerous contributions to W in the 
initial iteration. Essentially, the first relaxation step is performed assuming that the defect 
exerts constant forces on the surrounding ions. 

The method normally converges to a minimum in between four and twelve iterations. 
Essentially, we have a minimization method which requires only about a dozen calculations 
of the energy, which is very much less than the number of computations required in a 
minimization method employing a search procedure. We have carried out comparisons 
of the two methods only in a few relatively simple cases which are basically quite favourable 
to search procedures. However, this new method is still between ten and twenty times 
faster. In particular, the method is very satisfactorily applied to problems involving many 
variables, up to about fifty independent coordinates and fifty dipoles. Search procedures 
become relatively less efficient as the number of variables increases but the convergence 
of the new method is not seriously affected. The only effective limitation is imposed by 
the computer storage required for the matrix H. However, this is not frequently referenced 
and it could easily be stored on a device with a slow access time without hindering the 
speed of computation. 

3. Conclusions 
The results of our calculations are collected in tables 3.1 to 3.7. The results in tables 3.1 

and 3.2 are the energies of the inert gas held at an interstitial site and at the saddle point 
during diffusion. Results are given for various sizes of the relaxed regions. The best estimates 
of the activation energy are contained in table 3.3. 

The results are generally insensitive to the choice of potential and this is true especially 
for the activation energy. Felix 1970 has investigated the CaF,/Ar system experimentally 
and finds that the behaviour is similar to that for the alkali halides (see, for example Felix 
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Table 3. Numerical results for CaP,/Ar 

Table 3.1. Energy of inert gas interstitial 

Potential Number of shells relaxed Energy 
A 

FT 

2 
8 

16 
2 
8 

16 

3.52 eV 
3.03 eV 
2.96 eV 
4.31 eV 
3.10 eV 
3.61 eV 

Table 3.2. Energy of inert gas a t  saddle point along diffusion path 

Potential Number of shells relaxed Energy 
A 

FT 

2 
10 
22 

2 
10 
22 

9.61 eV 
6.17 eV 
5.43 eV 
9.92 eV 
6.51 eV 
5.83 eV 

Table 3.3. Energy of gas interstitial and gas atom at saddle point along diffusion 
path with activation energy for interstitial diffusion (Ah*)  

Potential El", E S P  Ahi 

A 
FT 

Vacancy 
Anion 

Cation 

2.96 eV 
3.61 eV 

5.43 eV 
5.83 eV 

Table 3.4. Vacancy formation energies 

Number of shells in Number of shells in 
region I region 11' 

2 41 
8 35 

15 28 
2 22 
8 16 

16 8 

Table 3.5. Interstitial ion formation energies 

Number of shells in Number of shells in 
Interstitials region I region II '  

Anion 

Cation 

2 
8 

16 
2 
8 

16 

22 
16 
8 

22 
16 
8 

2 4 1  eV 
2.22 eV 

E ,  
4.82 eV 
4.55 eV 
4.52 eV 

23.30 eV 
23.02 eV 
22.94 eV 

E ,  
-2.18 eV 
- 2.35 eV 
-2.41 eV 
- 15.63 eV 
- 16.38 eV 
- 16.56 eV 
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(1967) and (1968)). The Arrhenius plot shows two regions. At high temperatures. we associ- 
ate the observed process with an interstitial diffusion mechanism. The observed value of 
the activation energy is 3.0 eV which is in reasonable agreement with our value of 2.2-25 eV. 
However, we will discuss whether the process is modified by trapping into vacancies after 
a discussion of our results for the formation energies of the intrinsic defects in CaF,. The 
low temperature region, with an observed activation energy of 6.0 eV, is presumably 
characterized by trapping into vacancy aggregates or other extrinsic defects. Our values 
for the solubility energy and interstitial activation energy suggest an activation energy 
for such a process of about 5-6 eV. 

Tables 3.4 and 3.5 give the formation energies of ion vacancies and interstitials respec- 
tively. Results are given for various sizes of the two regions whose significance in the calcu- 
lation is discussed in 9 2. It is found that extending the region of explicit relaxation (region I) 
slightly reduces the calculated formation energy. But there is no dramatic effect, suggesting 
that the use of the Mott-Littleton approximation to describe the distortion and polarization 
of the crystal outside a very limited relaxed region is a remarkably successful expedient in 
calculating the energy of formation of a charged defect. 

The results do  not differ substantially from the values quoted by Franklin (1968). The 
anion Frenkel energy (gFA) is 2.1 eV, the cation Frenkel energy (gFc) 6.4 eV. These are 
slightly lower than Franklin’s results (2.7 eV and 7.1 eV respectively) and the anion Frenkel 
energy is not in such good agreement with the experimental value of 2.8 eV given by Ure 
(1957). However, the experience with similar calculations on the alkali halides (see, for 
example, Boswarva and Lidiard (1967) and Scholz (1968)) would lead us to expect that the 
calculated value should be too small. Using the calculated lattice energy, 2735 eV, the 
energy of formation of a Schottky trio (gs) is 4.4 eV, again less than Franklin’s value. 

Table 3.6. Energy to remove ion and introduce gas atom into vacancy 

Number of shells in Number of shells in 
Vacancy Potential region I region 11’ E ,  

Anion A 

Cation A 
FT 

FT 

15 
15 
16 
16 

28 6.40 eV 
28 6.84 eV 

8 23.72 eV 
8 23.92 eV 

Table 3.6 gives values of the energy required to remove an ion to infinity and insert an 
interstitial Ar atom into the resulting vacancy. The trend in the results as the extent of the 
relaxation about the defect is altered exactly parallels that found for the simple vacancies. 
Results are therefore given only for the largest relaxed regions. 

Table 3.7. 

Potential BA BA - I g F  Bc Bc - (ss - gF) Ah: 
A 1.08 eV - 0.0 eV 2.18 eV -0.1 eV 2.5 eV 
FT 1.29 eV 0.2 eV 2.63 eV 0.3 eV 2.5 eV 

Table 3.7 gives the binding energies into the vacancies. Norgett and Lidiard (1969) have 
shown that the diffusion coefficient for the gas is given by 

where A hiis the activation energy for interstitial diffusion, yi and +pT are the entropy factors 

F3 
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for the interstitial and trapped gas atom, C, is the trap concentration and BT is the binding 
energy into the trap. In an intrinsic region, where the trap concentration is given by an 
expression of the form CT oc exp ( - gT/kT), trapping of the gas atom is important if 
exp {(BT - gT)jkT} > 1, if BT > gT. In this case the observed activation energy for gas 
diffusion is Ah; = Ahi - BT + gT. 

In table 3.7, binding energies are compared with the thermal factors for each vacancy 
(gT = f gFA for the anion vacancy and gT = gs - gF for the cation vacancy). The binding 
energies are in all cases rather similar in value to  the appropriate trapping energies gT. 
Our calculation employing the Fumi-Tosi gas-ion potential suggests that there is some 
trapping of gas atoms into cation vacancies. However, the effect is not large and our results 
are not sufficiently precise to  show whether the gas is actually trapped into either type of 
vacancy at high temperature. The predicted activation energy Ah;, modified where appropri- 
ate to take account of trapping, is given in the last column of table 3.7. 

The experimental results of Lagerwall (1965) show that the diffusion is not affected by 
doping CaF, with Na+  or Y 3 +  ions. This result does not bear directly on any interpretation 
of diffusion in the intrinsic region which was the region studied by Lagerwall. The behaviour 
at low temperatures was obscured by a gas migration process with very low activation 
energy which is probably due to  diffusion along dislocations. The effect of doping, as 
shown by Felix and Muller (1970, private communication) for the alkali halides, is to 
move the temperature of the boundary between the high and low temperature regions. 

Thus it seems that within the limits imposed by the large uncertainties in the calculations 
and the difficult nature of the experiments, there is no fundamental discrepancy between 
the calculated and experimental results for argon diffusian in calcium fluoride. 
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