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Chapter 7  Diffraction from distorted crystallites 
In this chapter, diffraction from crystallites including structural defects is discussed.  Structural 
defects should always exist in realistic materials, even though it may sometimes be very few, and 
no significant effects might be observed.  Actually, the effects of structural defects on the observed 
diffraction measurements is quite significant in some cases.  Detailed analysis of observed 
diffraction peak profile provides information about the structural defects, and it is often important 
for evaluation of practical materials.  For example, hardening of metals generally causes structural 
defects, and the hardness and brittleness are strongly affected by the structural defects.  
     It should be noted that there are various kinds of structural defects, and it is often a very 
complicated problem how to describe the structural defects.  At first, the structural defects are 
classified into three groups based on the viewpoint of dimensionality.   

(i) Point defect : zero-dimensional structural defects.  It includes “vacancy” that means absence 
of atoms that should exists at a location, “interstitial” that means existence of atoms where it 
should not exist in the regular structure, and “substitutional solid solution” that means substitution 
of an atom by another element. Figure 7.1 schematically illustrates the three types of point defects.  

(ii) Linear defect : one-dimensional structural defects, including “dislocation”. There are two 
types of dislocations: one is “screw-type dislocation” and the other is “edge-type dislocation”.  
Figure 7.2 schematically illustrates the two types of dislocations.  

(iii) Planar defect : two-dimensional structural defects, including “stacking fault”.  The 
“surface”,  “interface” or “grain-boundary” may also be classified into the two-dimensional 
structural defects.  

     In principle, point defects can cause distortion of the crystal structure, but no significant effects 
on peak profile are practically observed, probably because the deformation caused by the point 
defects is not coherent, and the effect is similar to the random variation in the atomic positions 
caused by thermal vibration.  But the average interplanar spacing is slightly changed by the point 
defects or impurity atoms, and it is empirically known that the change in the unit cell volume or 
dimension of the crystal is proportional to the concentration of impurity, which is called the 
Vegard’s law.  
     The effects of linear and planar structural defects are naturally anisotropic, and they often 
coexist in a deformed crystal.  The anisotropic effects of dislocation may be modelled through the 
elastic deformation around the defects, but omitted in this text.  A simplified model about strain 
(though it may not be realistic...) and a model for stacking fault are introduced in this chapter.  
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7-1  Most simple model for strain

The simplest model for the effects of structural defects on diffraction peak profile is introduced in 
this section.  We assume that the lattice constants or the values of interplanar spacings are not 
constant, but are varied on different region in a specimen.  It is likely to be caused by 
inhomogeneous chemical composition or internal stress caused by misfit at grain boundary in 
polycrystalline materials.  
     Note that compressive stress should reduce the interplanar spacings along the direction of the 
force, and tensile stress should expand the interplanar spacings.  The technique to evaluate the 
macroscopic internal stress from the observed amount of the X-ray diffraction peak shift is called 



“residual stress measurement”, though it is rather a “residual strain measurement” combined with 
the speculation of stress based on the known elastic properties of the material.  
     When the statistical distribution of the interplanar distance  dhkl , or the reciprocal interplanar 

distance   dhkl
* , is modeled by the normal distribution, the probability density function about the 

relative deviation of the interplanar spacing : 

	


  
ε =

Δdhkl

dhkl

~
Δdhkl

*

dhkl
* 	

 (7.1)

should be given by a common formula : 

	


  
f ε( ) = 1

2πσ
e
− ε 2

2σ 2 ,	

 (7.2)

where 

� 

σ  can definitely be related to the “root mean square of the relative strain”. 
     By differentiating the Bragg’s equation : 

	


  
d* = 2sinθ

λ
,	

 (7.3)

we have the following formula, 

	


  
Δd* = cosθ

λ
Δ2θ( ) , 	

 (7.4)

and the following relation between the relative deviation of the interplanar distance ε  and the 
deviation of the diffraction angle  Δ2θ ,

	


  
Δ2θ( ) = 2Δd* tanθ

d* = 2ε tanθ .	

 (7.5)

Then, the root mean square of the deviation in the diffraction angle is given by

	


 

Δ2θ( )2
= 2 ε 2 tanθ = 2σ tanθ .	

 (7.6)

Note that the broadening of the diffraction peak profile caused by the strain should be proportional 
to  tanθ on the scale of 2θ.  
     On the other hand, the broadening caused by the finite size of crystallites should be proportional 
to   1/ cosθ , as shown in the Scherrer’s equation.  If the total broadening of the observed diffraction 
peak profile is expressed by the sum of the effects of finite size and strain, it should be expressed by
	

   Δ2θ = X / cosθ +Y tanθ , 	

 (7.7)
where X and Y are proportionality factors.  By multiplying Eq. (7.7) by 

� 

cosθ , we have
	

   Δ2θ( )cosθ = X +Y sinθ .	

 (7.8)

So it is expected that the y-section (X) will give the size effect, and the slope (Y) will give the strain 
effect, when the plot of  Δ2θ( )cosθ  against  sinθ  lies on a common line.  This plot is called 

“Williamson-Hall plot”, and it is often claimed that the size and strain effects can be separated by 
this method, called as “Williamson-Hall method”.  An example of an idealistic Williamson-Hall 
plot is shown in Fig. 7.3.  



0.20

0.15

0.10

0.05

0.00

Δ2
Θ

 co
s  Θ

 (º
)

0.80.60.40.20.0
sin Θ

Fig. 7.3  Williamson-Hall plot (for isotropic broadening).

     The amount of strain 
 

ε 2  evaluated by the above method is often called “microstrain” or 

“inhomogeneous strain”.  
     The strain in a crystal should be anisotropic, when the stress caused by a linear defect 
(dislocation) is dominant.  For example, in the case of the edge-type dislocation including linear 
defects along the [100]-direction, the interplanar spacing of (h00) planes will be less affected, while 
the spacing of the lattice planes having the normal direction perpendicular to the [100]-direction 
should be most strongly affected by the distortion.  It is possible that h00-reflections are less 
broadened, while the broadening about 0kl-reflections are more significant.  The crystal habit 
caused by anisotropic crystal growth may also cause size-broadening depending on the orientation 
of the crystal structure.  The author would like to note that anisotropic line broadening is often 
observed in realistic materials.  
     When the broadening of diffraction peaks is anisotropic, the Williamson-Hall plot will not lie on 
a common linear dependence, but we may possibly find what kind of anisotropy exists from the 
Williamson-Hall plot, provided that the Miller indices are attached to each data point.  It is often 
recommended to attach the Miller indices to the data points in the Williamson-Hall plot, which is 
called “indexed Williamson-Hall plot”.  You may sometimes find a linear relation about 100, 200, 
300-reflections and another linear relation about 111, 222, 333-reflections, for example.  

7-2  Paterson's theory for stacking fault

In a cubic close packing structure, triangular arrangement of atomic planes are stacking in the 
pattern of   ABCABCABC  .  It is likely that the stacking scheme is ocasionally broken and 
shows such a pattern : (i)  ABCABABCABC  , or (ii)   ABCABCBACBA .  The stacking 

fault of type (i) can be caused by deformation by the stress along opposite directions on the top and 
bottom faces parallel to the (111)-plane, for example,  (shear deformation), and called 
“deformation fault”.  The stacking fault of the type (ii) may appear in the growth process of the 
crystal, and is called “growth fault” or “twin fault”.  



     In the following, the Paterson’s theory for diffraction peak profile affected by the deformation 
fault is described.  (A theory for growth fault has also been proposed, but it may be less convincing 
as compared with the theory for deformation fault.)

7-2-1  Calculation of diffraction peak profile affected by deformation fault

Assume the lattice vectors of the cubic close packing structure to be   
a ,   

b ,   
c , and the lattice 

constant to be 

� 

a.  The vectors   
a ,   

b ,   
c  have the common length of  a , and orthogonal to each 

other.  As we are interested in the stacking fault along the (111)-direction, a hexagonal system 
having the c-axis parallel to the (111)-direction of the cubic system is introduced.  
     The lattice vectors of the hexagonal system are defined by the following equations, 
	

    

aH = − a +

b 	

 (7.9)

	

    

bH = −


b + c 	

 (7.10)

	

    
cH = a +


b + c 	

 (7.11)

The relationship between the cubic and hexagonal lattice vectors are shown in Fig. 7.4.  
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Fig. 7.4  Cubic and hexagonal lattice vectors.

The volume of the hexagonal cell is calculated by applying the relation : 
	



   
aH ×

bH = − a +


b( )× −


b + c( )

	

   =
a ×

b − a × c −


b ×

b +

b × c

	


  
= a a +


b + c( ) , 	

 (7.12)

which gives
	



   
VH = aH ×


bH( ) ⋅ cH = a a +


b + c( ) ⋅ a +


b + c( ) = 3a3 .	

 (7.13)

And the reciprocal lattice vectors for the hexagonal lattice are given by



	


   

aH
* =

bH × cH

VH

=
−

b + c( )× a +


b + c( )

3a3

	

 	


   
=
c − a +


b − a

3a2 = −2 a +

b + c

3a2 ,	

 (7.14)

	


   


bH

* =
cH × aH

VH

=
a +

b + c( )× − a +


b( )

3a3

	

 	


   
=
c −

b + c − a
3a2 = − a −


b + 2c

3a2 ,	

 (7.15)

	


   

cH
* =
aH ×

bH

VH

=
a +

b + c

3a2 .	

 (7.16)
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Fig. 7.5  Arrangement of atoms in the cubic close packing structure and the hexagonal cell.

The hexagonal unit cell is divided into a smaller cell defined by    
′a = aH / 2 ,    


′b =

bH / 2 ,    

′c = cH / 3 , 

as shown in Fig. 7.5.  Note that the cell defined by    
′a ,   

′b  and   

′c  is not a unit structure, but it may 
simplify the calculation of the intensity, because the number of atoms in the cell is unity.  The 
volume of the small hexagonal cell is given by

	


  
′V = a3

4
, 

and the reciprocal lattice vectors are given by

	


   
′a * =


′b × ′c
′V

=
2 −2 a +


b + c( )

3a3 ,

	


   


′b * =
′c × ′a

′V
=

2 − a −

b + 2c( )

3a3 ,

	


   
′c * =

′a ×

′b

′V
=
a +

b + c
a2 .

     The total diffraction intensity from a crystal should be given by

	


   
I(

K ) = Fξ ,η ,ς (


K )

′ξ , ′η , ′ς
∑

ξ ,η ,ς
∑ F ′ξ , ′η , ′ς

* (

K )exp 2π i


K ⋅ (ξ − ′ξ ) ′a + (η − ′η )


′b + (ς − ′ς )′c⎡⎣ ⎤⎦{ } ,

	

 	

 	

 	

 (7.17)



where 
   
Fξ ,η ,ς (


K )  is the structure factor located at the position :   ξ

′a +η

′b +ς ′c  .  Since the number 

of atoms included in the cell is always one, the absolute value of 
   
Fξ ,η ,ς (


K )  should be independent 

of the location of the cell, but the phase of the structure factor varies on the atomic position in this 
small hexagonal cell.  
     Here we assume that the scattering vector is expressed by 
	

    


K = ′h ′a * + ′k


′b * + ′l ′c * , 	

 (7.18)

and the values of  ′h ,  ′k ,  ′l  can have fractional values (not restricted to integer values).  Then the 
diffraction intensity should be given by 

	


   
I(

K ) = Fξ ,η ,ς (


K )

′′ξ , ′′η , ′′ς
∑

ξ ,η ,ς
∑ Fξ+ ′′ξ ,η+ ′′η ,ς+ ′′ς

* (

K )exp 2π i


K ⋅ ′′ξ ′a + ′′η


′b + ′′ς ′c( )⎡⎣ ⎤⎦

	


   
= Fξ ,η ,ς (


K )Fξ+ ′′ξ ,η+ ′′η ,ς+ ′′ς

* (

K )

′′ξ , ′′η , ′′ς
∑

ξ ,η ,ς
∑ exp 2π i ′h ′′ξ + ′k ′′η + ′l ′′ς( )⎡⎣ ⎤⎦ ,	

 (7.19)

for ′ξ = ξ + ′′ξ , ′η =η + ′′η , ′ς = ς + ′′ς , and the above equation is rewritten as 

	


   
I(

K ) = V ′′ξ , ′′η , ′′ς

′′ς =−∞

∞

∑
′′η =−∞

∞

∑
′′ξ =−∞

∞

∑ J ′′ξ , ′′η , ′′ς (

K )exp 2π i ′h ′′ξ + ′k ′′η + ′l ′′ς( )⎡⎣ ⎤⎦ ,	

 (7.20)

where 
   
J ′′ξ , ′′η , ′′ς (


K )  is defined by

	


   
J ′′ξ , ′′η , ′′ς (


K ) ≡ Fξ ,η ,ς (


K )Fξ+ ′′ξ ,η+ ′′η ,ς+ ′′ς

* (

K )

ξ ,η ,ς
∑ .	

 (7.21)

The value of 
  
V ′′ξ , ′′η , ′′ς  in Eq. (7.20) represents “the fraction of existence of translation vector 

  ′′ξ ′a + ′′η

′b + ′′ς ′c   in the crystal”.  The value should be close to unity for small value of  

  ′′ξ ′a + ′′η

′b + ′′ς ′c , but generally becomes smaller for larger values of  

  ′′ξ ′a + ′′η

′b + ′′ς ′c , because  

the translation symmetry is not satisfied beyond the size of the crystal.  Here we introduce a further 
assumption that the crystal is sufficiently large and the value of  

  
V ′′ξ , ′′η , ′′ς  is always equal to 1.  

     Even if there exist stacking faults in the crystal, the atomic arrangement in one atomic layer 
should still be the triangular lattice for the close packing structure.  Since the relative arrangement 
of atoms among the one-atom layer is the same, the structure factor

   
Fξ ,η ,ς (


K )  for the common value 

of  ς should be equivalent, that is, the relation : 

	


   
Fξ ,η ,ς (


K ) = Fξ+ ′′ξ ,η+ ′′η ,ς (


K ) ,

which means the translational symmetry along the two dimensional atomic layer, is always 
satisfied.  Then the value of  

   
J ′′ξ , ′′η , ′′ς (


K )  is also independent of  ′′ξ  and ′′η , and it varies only on 

the value of ′′ς .  Therefore, we can ignore the subscripts ′′ξ  and ′′η , and assume 

   
J ′′ξ , ′′η , ′′ς (


K ) = J ′′ς (


K ) .  

     Eq. (7.20) can then be rewritten as 



	


  
I( ′h , ′k , ′l ) = e2π i ′h ′′ξ

′′ξ =−∞

∞

∑ e2π i ′k ′′η

′′η =−∞

∞

∑ J ′′ς ( ′h , ′k , ′l )e2π i ′l ′′ς

′′ς =−∞

∞

∑ . 	

 (7.22)

The intensity   I( ′h , ′k , ′l )  has non-zero values only for the case both  ′h  and  ′k  are integer, because 

  
e2π i ′h ′′ξ

′′ξ =−∞

∞

∑ = 0  and 
  

e2π i ′k ′′η

′′η =−∞

∞

∑ = 0  for non-integer values of  ′h  and  ′k  .  Now, we can assume that 

	


  
I( ′h , ′k , ′l ) = Jm( ′h , ′k , ′l )e2π im ′l

m=−∞

∞

∑ 　( ′h ,  ′k  : integer), 	

 (7.23)

without loss of generality.  Note that non-integer value of l’ is still allowed here.  
     Let us consider the three types of atomic layers, A, B and C.  With respect to the atomic later A, 

the layer B is displaced by 
   

′a + 2

′b

3
, and the layer C is displaced by 

   
2 ′a +


′b

3
, as can be seen in Fig. 

7.5.  Then the structure factors of the A, B, C layers are given by 
	

    FA(


K ) = F0(


K ) , 	

 (7.24)

	


   
FB(

K ) = F0(


K )exp 2π i


K ⋅
′a + 2


′b

3
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ , 	

 (7.25)

	


   
FC (

K ) = F0(


K )exp 2π i


K ⋅ 2 ′a +


′b

3
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ .	

 (7.26)

     Here, we define the probabilities that two layers separated by m layers satisfying the relations 
  AA ,   AB  and   AC  to be   Pm

0 ,  Pm
+ and  Pm

− , respectively.  Of course, the relation : 

	

   Pm
0 + Pm

+ + Pm
− = 1 	

 (7.27)

should always be satisfied.  Then the expectation value of    Jm(

K )  is given by

	


   

Jm(

K ) = 1

3
FA(

K )FA

*(

K )Pm

0 + FA(

K )FB

*(

K )Pm

+ + FA(

K )FC

*(

K )Pm

−⎡⎣

	

    +FB(

K )FB

*(

K )Pm

0 + FB(

K )FC

*(

K )Pm

+ + FB(

K )FA

*(

K )Pm

−

	


   
+FC (


K )FC

*(

K )Pm

0 + FC (

K )FA

*(

K )Pm

+ + FC (

K )FB

*(

K )Pm

− ⎤⎦ , 	

 (7.28)

and substitution of    FA(

K ) ,    FB(


K ) ,    FC (


K )   by the expressions in Eqs. (7.24)-(7.26) will give

	


   

Jm(

K ) = 1

3
F0(

K )

2
Pm

0 + exp − 2π i( ′h + 2 ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

+ + exp − 2π i(2 ′h + ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

−⎧
⎨
⎩

	


  
+Pm

0 + exp 2π i(− ′h + ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

+ + exp 2π i( ′h + 2 ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

−

	


  
+Pm

0 + exp 2π i(2 ′h + ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

+ + exp 2π i( ′h − ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

− ⎫⎬
⎭

	


   
= 1

3
F0(

K )

2
Pm

0 + exp 2π i(− ′h + ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

+ + exp 2π i( ′h − ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

−⎧
⎨
⎩



	


  
+Pm

0 + exp 2π i(− ′h + ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

+ + exp 2π i( ′h − ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

−

	


  
+Pm

0 + exp 2π i(− ′h + ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

+ + exp 2π i( ′h − ′k )
3

⎡

⎣
⎢

⎤

⎦
⎥Pm

− ⎫⎬
⎭

.  

Finally, we obtain the result : 
	



   
Jm(

K ) = F0(


K )

2
Pm

0 + Pm
+e−2π i( ′h − ′k )/3 + Pm

−e2π i( ′h − ′k )/3⎡⎣ ⎤⎦ .  	

 (7.29)

     In the following, the formula to express the probability   Pm
0 ,  Pm

+ ,  Pm
−  by the probability of 

appearance of deformation fault α  will be derived.  
     First, let us evaluate the the probability   Pm

0 .   It is assumed that the zero-th layer belongs to the 

type-A layer.  Possible 4 patterns, where the m-th layer also belongs to the type-A layer, are 
following, 

	

   

� 

0
A
A
A
A






m − 2
A
A
B
C

m −1
B
C
C
B

m
A
A
A
A

The possibility for “B next to A”, “C next to B” and “A next to C” are all given by  (1−α ) , (regular 
arrangement), while the possibility for “C next to A”, “A next to B” and “B next to C” are all given 
by α  (false arrangement).  Therefore, 
	

   Pm

0 = Pm−2
0 (1−α )α + Pm−2

0 α (1−α )+ Pm−2
+ (1−α )(1−α )+ Pm−2

− αα , 	

 (7.30)
and the following relations : 
	

   Pm−1

0 = Pm−2
+ α + Pm−2

− (1−α ) , 	

 (7.31)

	

   Pm−2
0 + Pm−2

+ + Pm−2
− = 1 	

 (7.32)

are satisfied.  From the above relations, the following recurrence formula about   Pm
0  is derived, 

	

   Pm
0 + Pm−1

0 + 1− 3α (1−α )⎡⎣ ⎤⎦Pm−2
0 = 1−α (1−α ) .	

 (7.33)

The solution of Eq. (7.33) for the initial values of   P0
0 = 1 ,   P1

0 = 0  is given by

	


  
Pm

0 = 1
3
+ 1

3
− 1

2
+ 3(1− 2α ) i

2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

m

+ 1
3

− 1
2
− 3(1− 2α ) i

2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

m

,	

 (7.34)

and it can be rewritten as

	


  
Pm

0 = 1
3
+ 2

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos marctan 3(1− 2α )⎡

⎣
⎤
⎦{ } .  	

 (7.35)

The substitution: 
 
θ = arctan 3(1− 2α )⎡

⎣
⎤
⎦   for Eqs. (7.34) and  (7.35) gives 

	


  
Pm

0 = 1
3
+ 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
eimθ + e− imθ( )

	


  
= 1

3
+ 2

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( ) ,	

 (7.36)



and also the relations : 

	


  
Pm

+ = 1
3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m 1− 3i
2

eimθ + 1+ 3i
2

e− imθ
⎛

⎝
⎜

⎞

⎠
⎟

	


  
= 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( ) + 3sin mθ( )⎡
⎣

⎤
⎦ ,	

 (7.37)

	


  
Pm

− = 1
3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m 1+ 3i
2

eimθ + 1− 3i
2

e− imθ
⎛

⎝
⎜

⎞

⎠
⎟

	


  
= 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( )− 3sin mθ( )⎡
⎣

⎤
⎦ ,	

 (7.38)

and the following relations: 
	

   P−m

0 = Pm
0 	

 	

 (7.39)

	

  P−m
+ = Pm

− 	

 	

 (7.40)

	

  P−m
− = Pm

+ 	

 	

 (7.41)
are also satisfied.  
     For the case of   ′h − ′k = 3N  (N : integer), Eq. (7.29) : 

	


   

Jm(

K ) = F0(


K )

2
Pm

0 + Pm
+ e−2π i( ′h − ′k )/3+ Pm

− e2π i( ′h − ′k )/3⎡⎣ ⎤⎦

is reduced to 
   

Jm(

K ) = F0(


K )

2
.  Furthermore, the intensity given by Eq. (7.23) : 

	


  
I( ′h , ′k , ′l ) = Jm( ′h , ′k , ′l )e2π im ′l

m=−∞

∞

∑ , 

or

	


  
I( ′h , ′k ,lH ) = Jm( ′h , ′k ,lH )e2π imlH /3

m=−∞

∞

∑ ,	

 (7.42)

has non-zero values only for the case  ′l = ′N   or    lH = 3 ′l = 3 ′N  ( ′N : integer), and becomes zero 

otherwise.  It means that a sharp diffraction peak should appear in the case   lH = 3 ′l = 3 ′N , for 

arbitrary values of α , no matter there should be any stacking faults.  It appears to be reasonable 
because the interplaner spacing of the (111)-lattice plane is not affected by the fault in stacking of 
the (111) plane.  
     For the case of   ′h − ′k = 3N ±1 , by applying Eq. (7.29) : 

	


   

Jm(

K ) = F0(


K )

2
Pm

0 + Pm
+ e2π i/3+ Pm

− e±2π i/3( )
to Eq. (7.42), the formula of the diffraction intensity is given by

	


   
I( ′h , ′k ,lH ) = F0(


K )

2
Pm

0 + Pm
+ e2π i/3+ Pm

− e±2π i/3( )e2π imlH /3

m=−∞

∞

∑

	

 	


   
= F0(


K )

2
1+ Pm

0 + Pm
+ e2π i/3+ Pm

− e±2π i/3( )e2π imlH /3

m=−∞

−1

∑⎡

⎣
⎢



	

 	

 	


   
+ Pm

0 + Pm
+ e2π i/3+ Pm

− e±2π i/3( )e2π imlH /3

m=1

∞

∑ ⎤

⎦
⎥

	

 	


   
= F0(


K )

2
1+ Pm

0 + Pm
− e2π i/3+ Pm

+ e±2π i/3( )e−2π imlH /3

m=1

∞

∑⎡

⎣
⎢

	

 	

 	


   
+ Pm

0 + Pm
+ e2π i/3+ Pm

− e±2π i/3( )e2π imlH /3

m=1

∞

∑ ⎤

⎦
⎥

	

 	


   
= F0(


K )

2
1+ Pm

0 e2π imlH /3+ e−2π imlH /3( )
m=1

∞

∑⎡

⎣
⎢ + Pm

+ e2π i(mlH1)/3+ e−2π i(mlH1)/3( )
m=1

∞

∑

	

 	

 	


  
+ Pm

− e2π i(mlH±1)/3+ e−2π i(mlH±1)/3( )
m=1

∞

∑ ⎤

⎦
⎥

	

 	


   
= F0(


K )

2
1+ 2 Pm

0 cos
2πmlH

3m=1

∞

∑⎡

⎣
⎢ + 2 Pm

+ cos
2π(mlH 1)

3m=1

∞

∑

	

 	

 	


  
+2 Pm

− cos
2π(mlH ±1)

3m=1

∞

∑ ⎤

⎦
⎥ , 

and the application of Eqs.  (7.36), (7.37), (7.38) :  

	


  
Pm

0 = 1
3
+ 2

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( )

	


  
Pm

+ = 1
3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( ) + 3sin mθ( )⎡
⎣

⎤
⎦

	


  
Pm

− = 1
3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( )− 3sin mθ( )⎡
⎣

⎤
⎦

will give

	

 	


   
= F0(


K )

2
1+ 2 1

3
+ 2

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( )⎧

⎨
⎩

⎫
⎬
⎭

cos
2πmlH

3m=1

∞

∑⎛
⎝⎜

	

 	

 	


  
+2 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( ) + 3sin mθ( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭m=1

∞

∑

	

 	

 	


   
×cos

2π(mlH 1)
3

	

 	

 	


  
+2 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( )− 3sin mθ( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭m=1

∞

∑

	

 	

 	


  
×cos

2π(mlH ±1)
3

⎞
⎠⎟

	

 	


   
= F0(


K )

2
1+ 2 1

3
+ 2

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( )⎧

⎨
⎩

⎫
⎬
⎭

cos
2πmlH

3m=1

∞

∑⎛
⎝⎜

	

 	

 	


  
+2 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( ) + 3sin mθ( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭m=1

∞

∑



	

 	

 	


  
× cos

2πmlH

3
cos 2π

3
± sin

2πmlH

3
sin 2π

3
⎛
⎝⎜

⎞
⎠⎟

	

 	

 	


  
+2 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( )− 3sin mθ( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭m=1

∞

∑

	

 	

 	


   
× cos

2πmlH

3
cos 2π

3
 sin

2πmlH

3
sin 2π

3
⎛
⎝⎜

⎞
⎠⎟
⎞

⎠⎟

	

 	


   
= F0(


K )

2
1+ 2 1

3
+ 2

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( )⎧

⎨
⎩

⎫
⎬
⎭

cos
2πmlH

3m=1

∞

∑⎛
⎝⎜

	

 	

 	


  
+2 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( ) + 3sin mθ( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭m=1

∞

∑

	

 	

 	


  
× − 1

2
cos

2πmlH

3
± 3

2
sin

2πmlH

3

⎛

⎝
⎜

⎞

⎠
⎟

	

 	

 	


  
+2 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

m
cos mθ( )− 3sin mθ( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭m=1

∞

∑

	

 	

 	


   
× − 1

2
cos

2πmlH

3


3
2

sin
2πmlH

3

⎛

⎝
⎜

⎞

⎠
⎟
⎞

⎠
⎟ .  

When we express the above equation by the following formula, 

	


  
I( ′h , ′k ,lH ) = C an cos

2πnlH

3
⎛
⎝⎜

⎞
⎠⎟
+ bn sin

2πnlH

3
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

n=0

∞

∑  , 	

 (7.42)

we find the following relations, 
	

   a0 = 1,	

 	

 (7.43)

	


  
an = 2 1

3
+ 2

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

n
cos nθ( )⎧

⎨
⎩

⎫
⎬
⎭

	

 	


  
− 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

n
cos nθ( ) + 3sin nθ( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

	

 	


  
− 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

n
cos nθ( )− 3sin nθ( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

	


  
= 2 − 1− 3α (1−α )⎡

⎣
⎤
⎦

n
cos nθ( ) n ≠ 0⎡⎣ ⎤⎦ ,	

 (7.44)

	

   b0 = 0 ,	

 	

 (7.45)

	


  
bn = ± 3 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

n
cos nθ( ) + 3sin nθ( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

	

 	


   
 3 1

3
− 1

3
− 1− 3α (1−α )⎡
⎣

⎤
⎦

n
cos nθ( )− 3sin nθ( )⎡
⎣

⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

	


   
= 2 − 1− 3α (1−α )⎡

⎣
⎤
⎦

n
sin nθ( ) n ≠ 0⎡⎣ ⎤⎦ ,	

 (7.46)



where the double sign: ±  is corresponded to    ′h − ′k = 3N ±1 .
     Eq. (7.42) can be further modified as 

	


   
I( ′h , ′k ,lH ) = C 1+ 2 − 1− 3α (1−α )⎡

⎣
⎤
⎦

n
cos nθ( )cos

2πnlH

3
⎛
⎝⎜

⎞
⎠⎟
 sin nθ( )sin 2πnlH

3
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

n=1

∞

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

	


  
= C 1+ 2 − 1− 3α (1−α )⎡

⎣
⎤
⎦

n
cos

2πnlH

3
± nθ

⎛
⎝⎜

⎞
⎠⎟n=1

∞

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

	


  
= C 1+ 2 1− 3α (1−α )⎡

⎣
⎤
⎦

n
cos

2πnlH

3
± nθ + nπ

⎛
⎝⎜

⎞
⎠⎟n=1

∞

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

	


  
= C 1+ 2 1− 3α (1−α )⎡

⎣
⎤
⎦

n
cos 2πn

lH

3
+ 1

2
± θ

2π
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

n=1

∞

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. 	

 (7.47)

Since the following relation generally holds, 

	


  
1+ 2 r n cos(nθ )

n=1

∞

∑ =-1+ r n einθ + e− inθ( )
n=0

∞

∑

	


  
= −1+ 1

1− r eiθ +
1

1− r e− iθ

  
=
− 1− r eiθ( ) 1− r e− iθ( ) +1− r e− iθ +1− r eiθ

1− r eiθ( ) 1− r e− iθ( )

	


  
=
− 1− r eiθ − r e− iθ + r 2( ) +1− r e− iθ +1− r eiθ

1− r eiθ − r e− iθ + r 2
  
= 1− r 2

1+ r 2 − 2cosθ
, 

the sum of Eq. (7.47) for  α ≠ 0,1  will give the formula : 

	



  

I( ′h , ′k ,lH ) = C
1− 1− 3α (1−α )⎡⎣ ⎤⎦

1+ 1− 3α (1−α )⎡⎣ ⎤⎦ − 2 1− 3α (1−α ) cos 2π
lH

3
+ 1

2
± θ

2π
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

	



  

= C

3
2
α (1−α )

1− 3
2
α (1−α )− 1− 3α (1−α ) cos 2π

lH

3
+ 1

2
± θ

2π
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 .  	

 (7.48)

     Figure 7.6 illustrates the intensity distribution given by Eq. (7.48).  
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Fig. 7.6  Diffraction peak profile for deformation fault based on the Paterson’s theory, in the case of   ′h − ′k = 1 .

     We can find that the location of the peak is shifted and broadened on larger value of the 

frequency of stacking fault α .  The peak location for   ′h − ′k = 3N ±1 is given by 
  

lH

3
+ 1

2
± θ

2π
= ′N

(

� 

N ': integer), that is, the position of the peak is given by  

	


   
lH = 3 ′N − 3

2


3
2π

arctan 3(1− 2α )⎡
⎣

⎤
⎦ .  	

 (7.49)

As the peak location for  α = 0  is given by 
 
arctan 3(1− 2α )⎡

⎣
⎤
⎦ =

π
3

,  the original (non-shifted) peak 

position for   ′h − ′k = 3N ±1  should be given by 
   
lH = 3 ′N − 3

2


1
2
= 3 ′N − 2

3 ′N −1{ .  

     Here we introduce 
	

   y = arctan x , 
and the following relation : 

	


  
d y
d x

= 1
1+ x2 ,

gives

 	


 

d
dα

arctan 3(1− 2α )⎡
⎣

⎤
⎦ = − 2 3

1+ 3 1− 2α( )2 ,

and then

	


 
arctan 3(1− 2α )⎡

⎣
⎤
⎦ ~ π

3
− 3α

2
.  

The peak location is approximated by 

	


   
lH = 3 ′N − 3

2


3
2π

arctan 3(1− 2α )⎡
⎣

⎤
⎦



	


   
~ 3 ′N − 3

2


1
2
− 3 3α

4π

⎛

⎝
⎜

⎞

⎠
⎟ , 

and the shift of the peak is given by 

	


   
ΔlH = 3 ′N − 3

2


3
2π

arctan 3(1− 2α )⎡
⎣

⎤
⎦ − 3 ′N − 3

2


1
2

⎛
⎝⎜

⎞
⎠⎟

	


  
= ± 1

2


3
2π

arctan 3(1− 2α )⎡
⎣

⎤
⎦

	


 
~ ± 3 3α

4π
.

     Next, let us evaluate the approximate value for the broadening.  The integrated intensity of one 

diffraction peak should be given by  
  

I( ′h , ′k ,lH )d lH
peak lH−3/2

peak lH+3/2

∫  , and from Eq. (7.47), the intensity 

profile should be given by

	


  
I( ′h , ′k ,lH ) = C 1+ 2 1− 3α (1−α )⎡

⎣
⎤
⎦

n
cos 2πn

lH

3
+ 1

2
± θ

2π
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

n=1

∞

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, 

and then, we obtain 

	


  

I( ′h , ′k ,lH )d lH
peak lH−3/2

peak lH+3/2

∫ = C 1+ 2 1− 3α (1−α )⎡
⎣

⎤
⎦

n
cos 2πnl

3n=1

∞

∑⎧
⎨
⎩

⎫
⎬
⎭

d l
−3/2

3/2

∫

	


  
= C 3+ 2 1− 3α (1−α )⎡

⎣
⎤
⎦

n

n=1

∞

∑ cos 2πnl
3

d l
−3/2

3/2

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

	


  
= C 3+ 2 1− 3α (1−α )⎡

⎣
⎤
⎦

n 3
2πn

sin 2πnl
3

⎡

⎣
⎢

⎤

⎦
⎥

n=1

∞

∑
−3/2

3/2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	

   = 3C .
     As the value of the peak-top intensity is given by

	



  

Imax ( ′h , ′k ,lH ) = C

3
2
α (1−α )

1− 3
2
α (1−α )− 1− 3α (1−α )

 ,

   the integral breadth  βH  is given by the following equation, 

	


  
βH =

I( ′h , ′k ,lH )d lH
peak lH−3/2

peak lH+3/2

∫
Imax ( ′h , ′k ,lH )

	

 (7.50)

	



 

=
3 1− 3

2
α (1−α )− 1− 3α (1−α )⎡

⎣⎢
⎤
⎦⎥

3
2
α (1−α )  

=
3 2− 3α (1−α )− 2 1− 3α (1−α )⎡
⎣

⎤
⎦

3α (1−α )



	



 

=
3 1− 1− 3α (1−α )⎡
⎣

⎤
⎦

2

1− 1− 3α (1−α )⎡
⎣

⎤
⎦ 1+ 1− 3α (1−α )⎡
⎣

⎤
⎦

	


 
=

3 1− 1− 3α (1−α )⎡
⎣

⎤
⎦

1+ 1− 3α (1−α )

	


 
~ 9α

4
.	

 	

 (7.51)

7-2-2  Powder diffraction pattern

In powder diffraction measurements, diffractions from different lattice planes may appear at the 
same position, when the diffraction angles have the same value.  For example, the  {111}-peak for a 

cubic crystal system consists of   111 ,  111 ,  111 ,  111 ,  111 ,  111,  111 , and  111 -reflections.  
The group of reflections symmetrically equivalent is called the equivalent reflections, but they 
generally become non-equivalent when there exists a stacking fault.  
     In the former section, the diffraction peak profile was expressed by the hexagonal index   ′h ′k lH , 

and the expression with the cubic index  hkl  will be derived in the following.  The relations 

between the lattice vectors   
a ,   

b ,   
c ,   
′a ,   

′b ,    
cH  and the corresponding reciprocal lattice vectors 

are summarized as follows, 

	


   
′a = − a +


b

2
,

	


   


′b = −


b + c
2

,

	

    
cH = a +


b + c ,

	


   
′a * =

2 −2 a +

b + c( )

3a2 = − 4
3
a* + 2

3

b* + 2

3
c* ,

	


   


′b * =

2 − a −

b + 2c( )

3a2 = − 2
3
a* − 2

3

b* + 4

3
c* ,

	


   
cH

* =
a +

b + c

3a2 = 1
3
a* + 1

3

b* + 1

3
c* .

In order to derive the relations between the cubic index  hkl  and the hexagonal index   ′h ′k lH , the 

relation :    

K = ′h ′a * + ′k


′b * + lH

cH
* = ha* + k


b* + lc*  is applied as follows, 

	


   
′h =

K ⋅ ′a = −h+ k

2
, 

	


   
′k =

K ⋅

′b = −k + l

2
,

	

    lH =

K ⋅ cH = h+ k + l ,



	


   
h =

K ⋅ a =

−4 ′h − 2 ′k + lH

3
,

	


   
k =

K ⋅

b =

2 ′h − 2 ′k + lH

3
,

	


   
l =

K ⋅ c =

2 ′h + 4 ′k + lH

3
.

Then we obtain

	


  
′h − ′k = −h+ 2k − l

2
,

and
	

   lH = h+ k + l .

For example, the index for the cubic system  111 will give   ′h − ′k = −2 ,  lH = 1 .  

     Since    −lH = 3N 1  is equivalent to   lH = 3N ±1  for the behavior about approaching to   lH = 0  or 

departing from   lH = 0 , the shift of the powder diffraction peak can be described by the absolute 

value of the index,   lH = h+ k + l .  The diffraction peak for the case: “the absolute value of the 

sum of the Miller’s indices for the cubic system” is a multiple of 3, that is,    h+ k + l = 3N , should 

have sharp and unshifted profile, and it should be broadened and shifted to higher diffraction angles 
for the case    h+ k + l = 3N +1 , and it should also be broadened but shifted to lower diffraction 

angles fo the case    h+ k + l = 3N −1 .  The  111  and  111 -reflections remains sharp because 

  h+ k + l = 3N , but the  111 ,  111,  111,  111,  111  and  111 -reflections are shifted to higher angle 

side and broadened, because    h+ k + l = 3N +1 .  

     In usual powder diffraction measurements, the diffraction intensity profile is recorded for the 

diffraction angle  2θ , or the length of the scattering vector (  d* -value),  
  
d* = K = 2sinθ

λ
 .  How the 

peak-shift and broadening are expressed in the profile plotted for the values of 2θ or   d*  ?  
     It is better to clarify the formula for the three-dimensional diffraction peak intensity distribution 
from a small single crystallite as a function of variable scattering vector, to solve this problem, even 
if it may technically difficult to be observed.  The diffraction intensity from a hypothetical perfect 
crystal appears only when the scattering vector matches to one of the reciprocal lattice points, the 
diffraction intensity distribution will appear as a sharp spot in the reciprocal space.  When a 
stacking fault exists, the diffraction spot should be shifted from a reciprocal lattice point and 
broadened, and both the shift and broadening should occur only along the direction of     

cH
*  .  



	



 
cH
*

 
′a *

Fig. 7.7  The diffraction spots (left) and powder diffraction pattern (right) affected by stacking falt .

The powder diffraction intensity profile affected by the stacking fault should be given by the radial 
distribution of the onion-like trace of the deformed diffraction spots, rotated around the origin.  
Figure 7.7 illustrates the diffraction spots and the corresponding powder diffraction intensity 
profile.  Powder diffraction intensity profile can be evaluated as the projection of diffraction spots 
deformed along    

cH
* -direction onto the radial direction.  

     The peak shift along the    
cH

* -direction is given by 

	


   
ΔlH( ) cH

* = ± 1
2
− 3

2π
arctan 3(1− 2α )⎡

⎣
⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭
cH

* , 

for   h+ k + l = 3N ±1 , and the projection along the direction : 

	

    

K = ha* + k


b* + lc*

is derived from the relation : 

	


   
cH

* =
a +

b + c

3a2 = 1
3
a* + 1

3

b* + 1

3
c*

as follows, 
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⎭

	


  
~

± 3 h+ k + l α

4π h2 + k 2 + l2 a
The peak shift on the horizontal axis of the diffraction angle 2θ is evaluated by applying the 

relations :
  
d* = 2sinθ

λ
 and 

  
Δd* =

Δ2θ( )cosθ
λ

=
Δ2θ( )d*

2 tanθ
 , as follows, 

	


  
2θpeak − 2θhkl =

2 dpeak
* − dhkl

*( ) tanθ

d*



	


  
=
±2 h+ k + l tanθ
3 h2 + k 2 + l2( )

1
2
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2π
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⎬
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~
± 3α h+ k + l tanθ

2π h2 + k 2 + l2( ) .

     The integral breadth is similarly evaluated as follows.  As the integral breadth along the    
cH

* -
direction is given by

	


   
βH
cH

* =
3 1− 1− 3α (1−α )⎡
⎣

⎤
⎦

1+ 1− 3α (1−α )
cH

* , 

the breadth is given in the wavenumber expression by

	


   
Δd* = βH
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
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~

3α h+ k + l

4 h2 + k 2 + l2 a
, 

and given in the diffraction-angle expression by

	


  
Δ2θ = 2Δd* tanθ

d*

	



  

=
2 1− 1− 3α (1−α )⎡
⎣

⎤
⎦ h+ k + l tanθ

1+ 1− 3α (1−α )⎡
⎣

⎤
⎦ h2 + k 2 + l2( )

	


  
~

3α h+ k + l tanθ
2 h2 + k 2 + l2( ) .

Figure 7.8 summarize the diffraction pattern affected by the deformation fault of the stacking along 
the (111)-direction of a cubic close packing structure.  
　The {111}-reflection peak is the overlap of the sharp  111 and  111  peaks ( h+ k + l  is a 

multiple of 3) and broad  111 ,  111,  111,  111,  111 ,  111  peaks shifted to the higher angle side 
(remainder 1 on division of  h+ k + l  by 3).  So the observed {111}-diffraction profile should be 

“an asymmetric profile, slightly shifted to higher angle side, having sharp peak-top and long tails”.
     The {200}-reflection is composed of   200 ,  200 ,  020 ,  020 ,  002 ,  002  reflections, and all the 

components belong to the same class of remainder 2 on division of  h+ k + l  by 3.  As all the 

components are broadened and shifted to lower angle side, the observed powder diffraction peak 
profile should be broad and shifted to the lower angle side.  



     As the {220}-reflection is the overlap of sharp  220  -type component ( h+ k + l  is a multiple of 

3) and broad  220 -type component shifted toward the higher angle side (remainder 1 on division of 

 h+ k + l  by 3), the observed peak profile should have sharp peak-top and long tails slightly shifted 

to the higher angle side, similarly to the {111}-reflection.  But the deformation of the {220}-peak 
profile should slightly be different from the {111}-peak, because the ratio of the intensities of the 
sharp 202 , 220 , 022 , 022 , 022 , 220 , 202 -reflections to the broad 220 , 202 , 022 , 022 , 202 , 

220 - reflections is 1:1, while that of the sharp 111, 111 -reflections to the broad 111 , 111 , 111 , 

111 , 111 , 111-reflections is 1:3, and the amount of broadening and peak shift are also different.

     The {311}-reflection will be the overlap of the sharp  311 -type component ( h+ k + l  is a 

multiple of 3), broad -type component (remainder 1 on division of  h+ k + l  by 3) shifted to the 

higher angle side, and another broad  311-type component (remainder 2 on division of  h+ k + l  by 

3) shifted to the lower angle side.  

{111} {200} {220} {311}      {222} {400} {331}          {420} {422}

k = 2sinθ / λ 

Fig. 7.8  Broadening and shift of powder diffraction peak profile for deformation fault in stacking along (111) direction 
of a cubic close packing structure.  


