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Abstract-The dynamic equations modeling a sieve plate at unsteady state are developed. Gear’s 
procedure for the simultaneous solution of systems of stiff differential and algebraic equations is 
presented and demonstrated for the solution of unsteady state distillation problems. It is shown that 
the basic stage model can be modified by the addition of one variable and one equation such that 
Gear’s procedures are readily applied. The proposed model and solution procedure is contrasted to 
recently published procedures. Numerical results are given for the solution of a problem involving an 
extractive distillation column at unsteady state. 

Scope-The large number of differential and algebraic equations required to describe the dynamic 
operation of a distillation column plus the fact that they do not appear in state variable form suggests 
the necessity for the reduction of the number of equations and variables and the restatement of the 
resulting expressions in state variable form. The manipulations required to express the equations in 
state variable form generally involve the time differentiation of the algebraic equations to obtain 
differential equations and the approximation of derivatives in the model equations by difference 
formula. 

The procedures proposed in this paper were developed to eliminate the complexities and errors 
introduced when the basic stage model is manipulated to reduce dimensionality or to fit the form 
required by an integration technique. The dimensionality problem may be overcome by exploiting 
sparse matrix methods for matrix storage and factorization. The selected integration procedure, 
Gear’s method, can be directly applied to the differential and algebraic equations of the basic model 
which totally eliminates the need for extensive manipulation of the stage equations. 

Conelosions and Slgnilicanee-Although a large number of stiff differential and algebraic equations 
are required to describe the dynamic operation of a distillation column, they may be solved in an 
efficient manner by use of Gear’s numerical integration method. Although the differential equations 
are not in state variable form, these equations and the algebraic equations may be solved directly 
without reduction in number or restatement in state variable form. Through the use of the Nordsieck 
vector, simultaneous change in step size and integration order becomes an efficient process. The 
algorithm of Kubicek et al. (1976) and the sparse matrix techniques of Tewarson (1973) provide an 
efficient method to store and factor the large sparse Jacobian matrix generated by Gear’s procedure. 

To illustrate the application of the method, a column containing 48 plates in the service of 
separating a mixture of methanol, acetone, ethanol, and water was used. Correlations of Prausnitz 
and the Wilson equation were used to account for the deviation of the enthalpies and vapor-liquid 
equilibrium relationships from ideal solution behavior. The efficiency of the numerical-integration- 
process is reflected by the fact that the integration procedure required 170 sec. of AMDAHL 470 V/6 
execution time to obtain the dynamic response for a period of 2 hr. 

The procedures presented are directly applicable for the solution of all models consisting of 
mixed sets of differential and algebraic equations. 

REVIEW OFRECENTUNSTEADYSTATEDLWILLATION highlight problems and complexities that are easily eli- 
PROCRDUlW3 minated or reduced by the procedures presented in this 

Several recent papers dealing with the dynamic simula- paper. Doukas and Luyben (1978) indicate that un- 
tion of distillation processes are of interest because they realistic model responses can occur if the energy balance 

differential equations are reduced to algebraic relation- 
*Author to whom correspondence should be addressed. ships under the assumption of fast energy equation 
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dynamics. The energy balance and total material balance 
equations used by Doukas and Luyben are given by Eqs. 
(1.1) and (1.2). 

Equation (1.3) results from the application of the chain 
rule and a simple substitution. The enthalpy derivative in 
Eq. (1.3) is then approximated using Eq. (1.4), 

0, = Lj-l- Vj - Lj t t$+, (1.2) 
Ujij = Lj_l(r;i-1- kj) - Vj(Eij - I;,) t Vj+,(fij+, - ij) 

(1.3) 

where the superscripts refer to the integration step 
number. The approximation of the enthalpy time deriva- 
tives by Eq. (1.4) introduces a numerical approximation 
into the basic model equations. The model is no longer a 
separate entity consisting of differential and algebraic 
equations. The model has been tied to a particular 
numerical approximation which will ultimately determine 
the integration accuracy. Increasing the order of the 
overall integration procedure will not increase the ac- 
curacy obtained as long as Eq. (1.4) is imbedded in the 
system of equations being integrated. 

Tung and Edgar (1979) developed a model for a 
laboratory column separating a binary mixture and 
compared simulation results to experimental steady state 
and dynamic response data. The basic stage model con- 
sisted of differential equations defining a total material 
balance, an energy balance, and a single component 
material balance. An algebraic equation defined holdup 
on each stage and relationships specific to binary systems 
were used to describe stream enthalpies and equilibrium 
relationships. The holdup was taken to be a function of the 
vapor and liquid flow rates as well as the physical 
properties. The holdup equation was converted to a 
differential equation by differentiating it with respect to 
time. However, in order to simplify their model, the time 
derivative of the vapor rate, V,, was set equal to zero. 

Ballard et al. (1978) presented a distillation model 
formulated for solution by a semi-implicit Runge-Kutta 
method. In particular they propose the use of the second 
order semi-implicit Runge-Kutta algorithm that requires 
the evaluation of the system Jacobian matrix at the 
beginning of each time step and the solution of two sets 
of linear equations (derived from the Jacobian) during 
the step. The semi-implicit Runge-Kutta algorithm 
requires the system differential equations to be in state 
variable form, Ballard et a/. (1978) choose the total liquid 
flow rates, 4, and the liquid mole fractions, xjj, to be the 
state variables. The basic dynamic distillation equations 
are then manipulated and reduced in number to achieve a 
state variable formulation. Several types of ap- 
proximations are necessary. For example if the stage 
molar holdup is a function of total liquid and vapor rates 
it is necessary to use the approximations defined by Eqns. 
(1.5) and (1.6) in some of the basic model equations. 

(1.6) 

Ballard et al. (1978) use the stage energy and total 
material balance given by Eqs. (1.1) and (1.2). The basic 
component material balance is given by Eq. (1.7). In 
order to reduce Eq. (1.7) to state variable form, the 
derivative appearing in Eq. (1.7) is expanded by the chain 
rule and Eq. (1.2) is used to eliminate the time derivative 
of the holdup. Equation (1.8) is the result of these 
manipulations. Similarily Eq. (1.1) is expanded resulting 
in Eq. (1.3). 

$fJjxji)= Lj--IXj--I.I-LIxli- vryiit Vj+lYj+l,i 

(1.7) 

$I=’ (Lj-1(x,-1.i - Xji) - Vj(yji 
u, 

-xjj)+ V,+l(yj+l,i-xjj) (1.8) 

Equation (1.3) must be further manipulated to eliminate 
the time derivative of stage liquid enthalpy. Ballard et al. 
(1978) expanded the liquid enthalpy by the chain rule and 
obtained Eq. (1.9). Equation (1.11) results from differen- 
tiating and rearranging the bubble point function defined 
by Eq. (1.10). Equation (1.10) is differentiated under the 
assumption that the equilibrium ratios are functions of 
temperature only. 

(1.9) 

2 Kjixji = 1 (1.10) 

$ Kjjij, 
f.=_ j=l 

’ ~x”!$ 

(1.11) 

a minimum 

a state 

a dynamic 
et al. 

Prokopakis Seider (1980) essentially use the 
variable equations derived by et (1978) but use 

adaptive semi-implicit to in- 
the is adaptive in the 

that the semi-implicit algorithm coefficients are 
calculated each step match the 
tion of local eigenvalues. 
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SMULTANEOUSSOLUTIONOFSTIFFDlFFERENTIALANDALGE 
BRAICEQUATIONS 

All the dynamic distillation procedures discussed in the 
previous section have resorted to difference ap- 
proximations directly in the model equations or have 
ignored certain derivatives when necessary to force 
equations into a form suitable for a particular in- 
tegration technique. These manipulations can be 
avoided by selection of integration techniques capable of 
the direct solution of systems consisting of both 
differential and algebraic equations. Two such integration 
techniques are Michelsen’s (1976a, 1976b) semi-implicit 
Runge-Kutta method and the class of linear multistep 
methods derived from numerical differentiation for- 
mulas. Both procedures are suitable for solving stiff 
systems. 

The semi-implicit Runge-Kutta method requires the 
analytical evaluation and factorization of the Jacobian 
matrix of the system of algebraic and differential equa- 
tions at least once each time step. The general distillation 
problem may require thermodynamic and tray hydraulic 
functions that are computationally complex. The im- 
position of the additional burden of analytically evaluat- 
ing the partial derivatives of these functions is a severe 
burden as many thermodynamic packages do not supply 
the required partial derivatives. For this reason the semi- 
implicit Runge-Kutta method was not chosen as the 
integration technique. The recent work of Weimer and 
Clough (1979) tends to support this decision. 

Linear multistep methods derived from differentiation 
formulas are readily implemented for the simultaneous 
solution of systems of stiff differential and algebraic 
equations. These methods are implicit and in general 
require the solution of a set of nonlinear algebraic equa- 
tions for each time step. The algebraic equations are 
generally solved by variations of the Newton-Raphson 
procedure. These methods thus do not require explicit 
and accurate evaluation of the Jacobian matrix at each 
time step. This is a significant advantage for general 
dynamic distillation problems relative to the semi-im- 
plicit Runge-Kutta method. 

The linear multistep methods can be implemented in 
various forms. Hachtel et al. (1971) employed a back- 
ward finite difference formulation. Gear (1971b) im- 
plemented the linear multistep formulas using a tech- 
nique due to Nordsieck (1962) in which approximations 
to derivatives at the current time step are saved rather 
than a history of previous integration variable values. 
The Gear formulation was selected as the basic pro- 
cedure. This procedure, published by Gear (1971b) as a 
subroutine DIFSUB, was modified for simultaneous 
solution of differential and algebraic equations. The basis 
for simultaneous solution of differential-algebraic sys- 
tems was discussed by Gear (1971~). Gear type codes, 
other than DIFSUB, are also available. Byrne et al. 
(1977) reviewed EPISODE and GEAR which are varia- 
tions of the basic Gear procedure. 

Standard practice in writing code to solve differen- 
tial equations appears to be the assumption of pure 
differential systems in state variable form as defined by 
Eq. (2.1). 

k = f(X, t). (2.1) 

Equation (1.1) clearly illustrates that natural dynamic 
distillation model equations are not of state variable 
form. As will be shown, a dynamic distillation model 
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consists of a system of mixed differential and algebraic 
equations. Gear type integration routines such as DIF- 
SUB, GEAR, and EPISODE assume a pure differential 
system in the form of Eq. (2.1). Thus DIFSUB, GEAR, 
and EPISODE all require modification if they are to be 
used for the solution of mixed differential-algebraic sys- 
tems. Gear’s basic procedures as implemented in DIF- 
SUB and the extensions required for the solution of 
differential-algebraic systems are discussed in a sub- 
sequent section. 

BASlCBQUlLlBRNMSTACEMODBLOFASlNGLESIEVETRAY 
Gallun (1979) proposed a model for distillation 

columns at unsteady state that is easily solved by Gear’s 
(1971~) procedures for the solution of mixed systems of 
stiff differential and algebraic equations. The basic stage 
model consists of the usual material balances, energy 
balances, hydraulic relationships, equilibrium relation- 
ships, and equations that define stage holdups. The 
model differs from other models in that the equations are 
not manipulated or differentiated to obtain expressions 
involving derivatives of state variables. Further, low 
order difference approximations are not used to eliminate 
derivatives that are difficult to evaluate. The proposed 
model further exploits Gear’s procedures by introducing an 
extra variable and algebraic equation for each stage. These 
additions permit the integration package to generate the 
derivatives required in the energy balance equation 
without the complexities introduced by application of the 
chain rule. 

The basic model for a single plate is defined by Eqs. 
(3.1)-(3.7). Column internals are shown in Fig. 1. Com- 
ponent material balances and equilibrium relationships 
are defined by Eqs. (3.1) and (3.2). The equilibrium 
relationships are general and are of the form given by 
Prausnitz et al. (1967). Equation (3.3), which is adapted 
from Van Winkle (1967) to relate stage pressures within 
the column, defines the pressure drop between stages j 
and j-l to be the sum of the dry tray pressure drop due 
to vapor from stage j passing through the holes in the 
sieve plate of stage j-1 and the pressure loss resulting 
from overcoming the head of the liquid held on stage j-1. 
The stage molar holdup is defined to be the sum of the 
moles of liquid held on the plate plus the moles of liquid 
in the downcomer. Equation (3.4) relates the stage molar 
holdup to the stage volumetric holdup, ‘&, which is an 
explicit function of various integration variables defined 
in Appendix B. Thus s/j is not an integration variable but 
a function of integration variables in the same sense that 
the equilibrium ratios and activity coefficients of Eq. 
(3.2) are functions of various integration variables and 
not integration variables themselves. Equation (3.5) is a 
force balance relating pressure drop to the height of clear 
liquid in the downcomer, the pressure drop in flowing 
under the downcomer from stage j to j+ 1, and the 
height of liquid on stage j t 1. The stage energy balance 
is given by Eqs. (3.6) and (3.7). The addition of the 
variable Ej and Eq. (3.7) allows the numerical package to 
approximate I?, with the same order of accuracy as all 

other derivatives without expanding d ii1 (t&i)/dt by 

the chain rule. Further the need to introduce low order 
approximations such as that defined by Eq. (1.4) is 
eliminated. The advantages of introducing Ej and Eq. 
(3.7) are further discussed in Appendix A. It should be 
noted that Eq. (3.6) assumes that each stage operates 
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hw,j-1 

Fig. 1. Sketch of tower internals. 

adiabatically. Equation (3.6) will have an additional term if 
this assumption is relaxed. The presence of the additional 
term will not alter the procedures discussed in this paper. 

Lj_lUj_l,i 
O= Fix, + Uj+l,i- Vji •t c 

z, Uj-l.k 

- Af!!i- - kji 

$, ujk 

O=YjY [-f-J-&& [g] 

0 = [Pj hL..j--IlPlf--ll 

O= Pj-Pj+i t 5[12Zj- hdc,jPk-hL.j+lPiL;Il 

Lj-12 Uj_,,ihj-l,i Lj 2 Ujihji 

O=F,Hj+ i=l i=l 

2 Uj-1.i - 2 uji 

+ $ Vj+l,ifij+l,i - $, Qtii - G 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Equations (3.1)-(3.7) represent 2c t 5 relationships 
required to model a single sieve plate as an equilibrium 
stage. The 2c + 5 stage variables are {U,i}i = 1, 2, . . ., c, 

{Uji}i = 1, 2, *. .I c, Tj, Pj, Lj, 2, and Ej. The various 
thermodynamic and hydraulic functions appearing in Eqs. 
(3.1)-(3,7) are considered to be explicit functions of 
the various stage variables. The equations defining some 
of these functions are given in Appendix B. Gallun (1979) 
gives a complete set of equations to define all the ther- 
modynamic and hydraulic functions appearing in Eqs. 
(3.1)-(3.7). 

GEAR'SMETAODFORTHElNTEGRATlONOFSYSTEMSOF 
AffiEBRAlCANDORDMARYDIFFERENTULEQUATIONS 

The solution of systems of equations involv- 
ing both algebraic and stiff ordinary differential 
equations has received considerable attention in the lit- 
erature over the past 20 years. Starting in the late 
nineteen sixties, Gear published a series of articles (1%7), 
(1971a), (1971c), and a book (1971b) pulling together the 
current technology for the solution of systems of stiff 
differential and algebraic equations. Although the 
development of Gear’s method, a multistep numerical 
algorithm is tedious, the final result is relatively simple 
and easy to apply. First the equations of Gear’s method 
for stiff differential equations are presented, and then 
Gear’s method for a system of algebraic and differential 
equations is shown to be a simple extension of these 
equations. 

Suppose that it is desired to solve the first order 
ordinary differential equation given by Eq. (4.1) using 
the multistep formula defined by Eq. (4.2). We assume 
that the required previous values are known and that the 
step size, h, is constant. 

k=f(x) (4.1) 

Xm = $r d&-i + POhf(Xn). (4.2) 

The coefficients {ai} and &, are determined such that Eq. 
(4.2) will be exact if the solution of Eq. (4.1) is a 
polynomal of degree k or less. Hemici (1962) indicates 
that stability considerations limit k in Eqs. (4.2) to 6. 

Equation (4.2) is in general a nonlinear equation in X. 
that will be iterated to convergence. The procedure used is 
Newton-Raphson. It is well known that the rate of 
convergence of the Newton-Raphson procedure is a 
function of the inital value used in starting the iterative 
procedure. Gear (1971b) predicts the initial value using 
Eq. (4.3) where again the coefficients are chosen to be 
exact for polynomials of degree k or less. 

It should be noted that since Eq. (4.2) is iterated to 
convergence, Eq. (4.3) only influences the rate of con- 
vergence and not the final value of X.. Equations (4.2) 
and (4.3) can be put into a useful form if Eq. (4.3) is 
added to Eq. (4.2) and the resulting equation rearranged. 
The result of this operation is given by Eq. (4.4). The 
predicted value of the derivative at the next step is 
defined by Eq. (4.5). 

(4.4) 
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Equation (4.5) can be substituted into Eq. (4.4) resulting 
in Eq. (4.6). The scalar, b, is defined by the identity 
given in Eq. (4.7) and the manipulations given by Eqs. 
(4.8) and (4.9). 
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ii, = DZ.-, (4.21) 

D = TBT-’ (4.22) 

Z. = TW, = T(W, t bC) (4.23) 

Z, = i, t bL (4.24) 

L=TC. (4.25) 

The matrix D is the Pascal triangle matrix. Gear (197lb) 
shows that the matrix multiplication implied by Eq. (4.21) 
can be carried out by successive additions resulting in a 
considerable savings of computational effort on large 
problems. Chua and Lin (1975) present a proof due to 
others showing that for all k the prediction matrix D will 
always be of the Pascal form. Since the first two com- 
ponents of Z, and W, are identical, the iterative 
process required for the solution of Eq. (4.11) remains 
unchanged. Since only the first two components of Z. 
enter into the solution of Eq. (4.11), the successive 
corrections obtained in the Newton-Raphson procedure 
can be accumulated and applied to the remaining terms 
in Z, at convergence. The L vectors for various k are 
given in Table 1 which has been taken from Gear 
(1971b). Gear (1971~) extended the above procedure for 
the simultaneous solution of mixed systems of differen- 
tial and algebraic equations as follows. 

Suppose it is desired to solve Eq. (4.26) for u, at t = t,, 
and that the equation has previously been solved at fn_iy 
i=l,2 , . . ., k t 1. In general, Eq. (4.26) will be nonlinear 
in u and thus require iterative solution. Let li,, be the 
initial value used in the iterative procedure as calculated 
from Eq. (4.27). The {ni} are chosen such that the pre- 
diction will be exact if u(t) is a polynomial in t of degree 
less than or equal to k. 

X” = 2” + ,&(hX” - hi=,) (4.6) 

& = hj(X”) (4.7) 

hX” = hi” + (hj(X,) - hi”.) (4.8) 

hX”=/&“+b (4.9) 

X, = 2” t &,b. (4.10) 

Equation (4.10) results if the definition of b implied by 
Eqs. (4.8) and (4.9) is used in Eq. (4.6). The scalar b is 
chosen such that Eq. (4.11) is satisfied as required by the 
identity of Eq. (4.7). 

hi” t b - hf(it’n t &,b) = 0. (4.11) 

Equation (4.11) is in general a nonlinear equation in b. 
Let Eq. (4.11) define the function G(b). After the pre- 
diction step, the Newton-Raphson procedure is used to 
find b such that G(b) is zero. The required derivative of 
G(b) with respect to b, for the Newton-Raphson pro- 
cedure, is given by Eq. (4.12). 

Ep+,,o-g _ I &+Bob 
(4.12) 

The vectors W, and WiT, as defined by Eq. (4.13) and 
(4.14) make it possible to write the prediction and cor- 
rection step in matrix notation. The prediction step is 
given by Eq. (4.15) and the correction step by Eq. (4.16). 
The vector C is defined by Eq. (4.17) and the matrix B is 
shown for k = 3. 

W” = IX”, a, xn-1,. . ., x-,+,IT (4.13) 

W. = [R, hri,, xn_l, . . .) X,-k+,]= , (4.14) 

iv, = BW,-, (4.15) 

W,=W,tbC (4.16) 

c = [&#, 1, 0, . . .) o]= (4.17) 

Nordsieck (1962) suggested that the vector, Z,, defined 
by Eq. (4.19) be carried rather than the W. vector 
defined by Eq. (4.13). Nordsieck (1962) showed that there 
exists a unique transformation matrix T, relating Z, to 
W. for each k. The transformation matrix is exact for 
polynomials of degree k. 

Z” = 

(4.19) 

If Z, is the predicted value of Z. then Eqs. (4.15) and 
(4.16) become the following using Nordsieck vectors. 

i. = TFi’. = TBW,_, = TBT-‘Z.-, (4.20) 

&Au, 0 = 0 (4.26) 
k+1 

li, = x qiU._i* 
i=l 

(4.27) 

Let Eqs. (4.28) and (4.29) define the vectors W. and W, 
respectively. The prediction step can then be written in 
matrix form as given by Eq. (4.30). The matrix E is 
shown for k =3. The iterative procedure can now be 
written as Eqs. (4.32) and (4.33) using the scalar e and 
the coefficient, PO, defined in Table 1. The scalar e is 
chosen to satisfy Eq. (4.34) 

W, = [u,, un-1,. . ., U.-k]= 

W. =[li,, I(“_,, *. .) U”_kIT 

W = EW,_, 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

I 

W,=W.teM (4.32) 

M = [PO, 0, 0, 0, . . ., OIT (4.33) 

g(li. + Poe, r”) = 0. (4.34) 

The ultimate goal of this analysis is to outline a pro- 
cedure to solve simultaneous stiff ordinary differential 
and algebraic equations. If the variables that have 
derivatives are carried as Nordsieck vectors, it would be 
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Table 1. Elements of the vector L 

k 

L(1) 

L(2) 

L(3) 

L(4) 

L(5) 

L(6) 

L(7) 

3 

a 
11 

II 
11 

a 
11 

a 
11 

*Note PO corresponds to L(I). 

d values of PO for Gear’s algorithms of order k* 

desirable to carry algebraic variables (variables whose 
derivatives never appear in the system equations) in the 
same manner. It is easily verified that if u(t) is a poly- 
nomial of degree k or less, then there exists a non- 
singular transitions matrix, Q, that exactly relates the Z,, 
vector of Eq. (4.19) and W. defined by Eq. (4.28). The 
predictor and corrector steps given by Eqs. (4.30)-(4.34) 
can now be rewritten in terms of the Nordsieck vector. 

i. = Qfiir. = QEW,_, = QEQ-‘Z._, (4.35) 

i. = DZ.-, (4.36) 

D = QEQ-’ (4.37) 

Z, = QW, = Q(iir. + eM) (4.38) 

Z.=i.+eL (4.39) 

L=QM. (4.40) 

D in Eq. (4.36) is the Pascal triangle matrix and iden- 
tical to the D matrix of Eq. (4.21). Similarly the L vectors 
in Eqs. (4.25) and (4.40) are identical. Thus the same 
basic method can be applied to both differential and 
algebraic equations. 

The procedures that have been described for in- 
dividual differential and algebraic equations are easily 
extended for mixed differential-algebraic systems. Let f 
and g be vectors of differential and algebraic equations 
defined by Eqs. (4.41) and (4.42). Let t be the in- 
dependent variable and X and u vectors of dependent 
variables of appropriate dimension. 

f(%, x, u, 1) = 0 (4.41) 

g(X, u, f) = 0. (4.42) 

The procedures outlined for the solution of a single 
differential or algebraic equation using Nordsieck vectors 
are easily applied for the solution of Eqs. (4.41) and (4.42). 
When a kth order method is being used, it is necessary to 
carry a k + 1 dimension Nordsieck vector for each element 
of X and u. The procedure outlined is then applied in 
parallel for each dependent variable. If b and e are the 
#rector corrections for the differential and algebraic vari- 

I 

4 

24 
50 

50 
50 

35 
50 

lo 
50 

1 
50 

5 

J2J3 720 
274 1764 

274 1764 
274 1764 

g 1624 
274 1764 

a5 
274 

735 
1764 

15 175 
274 1764 

1 21 
274 1764 

6 

-A- 
1764 

ables respectively, then Eqs. (4.11) and (4.34) can be 
rewritten as given by Eqs. (4.43) and (4.44). Equation (4.11) 
was derived assuming that the differential equation was 
written in the form of Eq. (4.1). It is one of the benefits of 
Gear’s method (1971b) that it is not required to write the 
differential equations in state variable form. 

f(hi, +b,i~+/%,b,i,+&e, f,)=O (4.43) 

t&C + Ah, i. + Poe, t.) = 0. (4.44) 

Gear (1971b) shows that the local truncation error of the 
method defined by Eq. (4.2) is given by Eq. (4.45) 
assuming the solution to Eq. (4.1) has (k +2) continuous 
derivatives. 

hk+l_y(k+l) 

ET = (k+ 1) + O(h’+*). (4.45) 

Gear (1971b) recommends that at each step of the in- 
tegration the absolute value of the truncation error be 
held below some value. Since Nordsieck vectors are 
used to implement the method, approximations to the 
(k + 1)st order are readily obtained by differencing the last 
component of the Z, vector given by Eq. (4.19). Z. will 
have (k t 1) components when a kth order method is 
being implemented. Since D is the Pascal triangle matrix 
and since Z, is obtained fro-m Eq. (4.21) it is obvious that 
the (k t 1)st element of Z, is equal to the (k+ 1)st 
element of Z._,; that is, Z,(k+ 1) = Z._,(k t 1). Thus 
the required difference is given by Eq. (4.46) where the 
vector L is defined by Eq. (4.25) 

Z,,(k t l)- Z._,(k t 1) = bL(k t 1). (4.46) 

The (k t 1)st component of Z,, is an approximation to 
(hkX”)/k!). Thus an approximation to hk+‘X(*+‘) is given 
by Eq. (4.47). 

h*+‘F*+*) = k!bL(k + 1). (4.47) 

Equation (4.48) results if Eq. (4.47) is substituted into Eq. 
(4.46) and the higher order error term is dropped. 
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(4.48) 

Truncation error is controlled by requiring that the in- 
equality given by Expression (4.49) be satisfied at each 
step of the integration. 

t2z 
L(k+ 1) 

> (ktl)XMAX ’ 
(4.49) 

XMAX is the largest value that the dependent variable 
has taken on during the integration and l is a parameter 
specified for the problem. If this criteria is not satisfied 
the step size is reduced until it is. If an integration 
variable has an initial value of zero this procedure must 
be modified. 

The use of Nordsieck vectors facilitates the changing 
of step size. The vector Z. defined by Eq. (4.19) 
represents information at step n with step size h. If it is 
desired to change to step size to crh, then each com- 
ponent of Z. must be modified as shown in Eq. (4.50). 

Z”(i)(,, = &‘Z”(i)(,. (4.50) 

Gear (197lb) proposed the use of Eqs. (4.51H4.53) tp 
calculate the step size that will satisfy the truncation 
error criteria at the current order and orders one higher 
and lower where b. is the value of b resulting from the 
solution of Eq. (4.11) at each time step. 

I’*’ 

hoWN = 1.3 
(4.51) 

l 2 (XMAX)(k t 1) ’ “2(k+‘) 

&AME = [( k!b.L(k + 1) >I 
1.2 

(4.52) 

[( 
(XMAX)( k + 2) 2 “2(k+2) 

‘* k!(b. - b._,)L(k t 1) >I wp = 1.4 
(4.53) 

The factors 1.2, 1.3, and 1.4 bias the method toward 
either not changing order or toward changing to a lower 
order. The logic in doing this is that changing step size 
requires work. However if it is determined to change 
step size, it is better to go to a lower order method, 
which requires slightly less work at each step. Stability 
considerations prevent changing step size at each step. 
Gear (1971b) provides criteria for making the decision to 
attempt a change in step size. 

The procedures outlined for step size and order control 
provide a method to start the solution procedure. In the 
solution of initial value problems all that is required are 
the values of the dependent variables at the start of the 
integration interval. The order of the method is set to one 
and the second components of the various Z. vectors are 
set to zero. The second component of the Z. vectors are 
set to zero because for an arbitrary set of differential and 
algebraic equations it is not always possible to obtain 
values for all the required derivatives. This is no manner 
affects the accuracy of the solution as an examination of 
the method defined by Eq. (4.2) reveals. The only thing 
affected is the error control procedure, which must be 
suspended until the second step. Thus the initial value of 
h chosen should be small, but will be increased later by 

the integration routine. Similar considerations also 
require that tests to increase the order of the method be 
prohibited until the third time step has been completed. 
These problems do not occur when integrating pure 
systems of differential equations in state variable form. 

Other strategies for step size and order can be devised 
such as using a subset of variables for which initial 
derivatives are available. After the required information 
is constructed the step size and order control can be 
based on all variables but to date computational 
experience indicates that it is best to base truncation 
error and step size control on the subset of variables that 
have a derivative in at least one equation of the differen- 
tial-algebraic system being integrated. 

NUMERICAL EXAMPLE 

Gallun (1979) tested the stage model and proposed 
solution procedure by solving an extractive distillation 
problem. The problem involved separating acetone from 
methanol and ethanol with water as the extractive agent. 
The column contained 48 equilibrium stages plus a partial 
reboiler and total condenser for a total of 50 stages. 
Equations (3.1X3.7) formed the basis of the extractive 
distillation model. Additional differential and algebraic 
equations were required to describe the dynamics of the 
reboiler and condenser system. Since a primary 
justification for the development of dynamic models is 
control system evaluation, a control scheme was selected 
and modeled. The column and associated control scheme is 
shown in Fig. 2. Additional details of the reboiler and 
condenser system are given by Gallun (1979). 

I________ __-- J 

Pig. 2. Tower control system. 



238 S. E. GALLIJN and 6.D. HOLLAND 

The complete column model, including the control 
system, required N( c + 4) + 26 algebraic equations and 
N(c + 1) + 17 differential equations for a total of N(2c + 
5) + 43 equations. Thus for a column with fifty stages and 
four components, 693 differential and algebraic equations 
result. The large sparse Jacobian matrix generated from 
these equations was stored and factored using the tech- 
niques summarized by Holland (1981). 

employed in reducing a high order differential equation 
to a’set of first order equations. 

I=p,t I ot 2 (cl”‘- c)dt (5.4) 

The hydraulic relationships required for the solution of 
Eqs. (3.3), (3.4) and (3.5) were calculated using sieve 
tray correlations given by Van Winkle (1976) and sum- 
marized in Appendix B. The various thermodynamic 
functions, required by Eq. (3.2), were calculated in a 
completely rigorous manner using procedures given by 
Prausnitz et al. (1%7). The liquid phase enthalpies 
required by Eq. (3.7) were assumed to be functions of 
temperature only and evaluated using curve fits given by 
Gallun (1979). The vapor phase partial molar enthalpies 
required by Eq. (3.6) were evaluated using the concept of 
virtual values defined by Holland and Eubank (1974). 
The virtual value of the partial molar enthalpy has the 
property that it gives the correct enthalpy of a mixture 
when substituted for the partial molar enthalpy. The 
vapor phase virtual enthalpy is defined by Eq. (5.1) 
where Hs is the enthalpy of pure compent i in the 
perfect gas state at T and flj is the departure function 
per mole of vapor mixture at Tr and Pj from the ideal gas 
state. The functional dependence of Qj is given by Eq. 
(5.2) 

o= f_+“‘_c) (5.9 

0 = K,(P - c) t z - p. (5.6) 

The temperature controller shown in Fig. 2 introduces 
a nonzero element into the lower triangular part of the 
Jacobian matrix. For a column without a controller using 
this temperature, this element would be zero. The non- 
zero element resulting from the use of the temperature 
controller was removed by applying Kubicek’s algorithm 
(1976) for the factorization of the Jacobian matrix. A 
brief description of this algorithm follows. Let the ori- 
ginal Jacobian J be rewritten as given by Eq. (5.7), 

J=AtR (5.7) 

where R contains the off-diagonal element resulting from 
the temperature controller. Then R may be rewritten as 
two vectors R1 and RZT and the expression for J 
becomes 

T J=A+R,R, . (5.8) 

fiji = Hyi + nj (5.1) 
Then the Newton-Raphson equations for the given time 
step under consideration take the form 

A~=(A~RIR~~)-‘(-~) (5.9) 

The departure function, Q for the vapor phase was 
evaluated by use of the first two terms of the virial 
equation of state. The second virial coefficient was ap- 
proximated as described by Prausnitz (1967) using the 
parameters given on page 213 of this monograph. The 
vapor pressures required to evaluate Kri were calculated 
using the Antoine equation with the coefficients given by 
Gallun (1979). Activity coefficients for each component 
in the liquid phase were computed by use of the Wilson 
equation using the constants listed by Gallun (1979). The 
fugacity coefficients for the vapor phase were computed 
by use of Eqs. (3.10)-(3.12) of Chapter 3 and pages 
143-144 of Appendix A of Prausnitz et al. (1967). 

where Ax is the vector change in the variables such as b 
and e shown in Eqs. (4.43) and (4.44). For this case the 
Kubicek algorithm reduces to: 

(1) Factor A to LU 
(2) Solve Ay = - f and AZ = Rt 
(3) Calculate a = 1 + RZTz 
(4) Calculate w = R2’y 
(5) Calculate Ax = y - (w/a)z. 

The temperature, pressure, level, and flow controllers 
shown in Fig. 2 were assumed to be ideal and thus 
described by Eq. (5.3) were cSet is the controller set 
point, c the measured variable, p the controller output, 
and p. the reference output of the controller. 

This algorithm must be used carefully for even though J 
is nonsingular it is possible to define R, and R2 such that 
A is singular. Gallun (1979) encountered this problem 
when solving the numerical example and proposed a 
simple modification to avoid the problem. 

p=K,(c=‘--c)+ ,‘5 (c”“-c)dttpo. 
I (5.3) 

The column feeds for the numerical example are 
specified in Table 2 and the initial controller set points 
for the control scheme of Fig. 2 are given in Table 3. 
Selected values of column variables at the initial steady 
state are given in Table 4 and the integration parameters 
used in the solution of the problem are given in Table 5. 
The column temperature profile has local extreme as 
indicated in Table 4. This phenomenon is common in 
extractive distillation processes. 

Equation (5.3) can not be solved directly by techniques 
discussed in this paper but must be transformed into a 
pair of equations by introducing the variable, Z, defined 
by Eq. (5.4). The resulting pair of equations used in the 
solution of the numerical example are given by Eqs. (5.5) 
and (5.6). Equation (5.5) results from differentiating Eq. 
(5.4) and rearanging. The variable, Z, has intial value p,,. 
The introduction of the variable, I, and the expansion of 
Eq. (5.3) into two equations is analogous to the technique 

The example problem consisted of raising the tem- 
perature controller set point from 626.2261”R to 
631.226l”R. Proper procedures were followed to account 
for the step change in the outputs of the temperature 
controiler and the steam flow controller to which it is 
cascaded. It is not only theoretically correct but a prac- 
tical necessity that the integration routine be started with 
0 t values as opposed to D- values of the variables. 
This is a very important point as Gear’s (1971b) error 
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Table 2. Feed forcing function initial steady state 

Component Feed Rates Molesi:!inute 

Stage 
F.H. 

Methanol Acetone Ethanol Water 33 
Btu /Minute 

3 0.0 0.0 0.0 5.0 6118.898 

5 25.0 0.5 5.0 197.5 513543.3 

21 65.0 25.0 5.0 5.0 146509.6 

j=1,2,...,50 0.0 0.0 0.0 0.0 0.0 
j#3,5,21 

stage 

1 

2 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

T Deg. R 

594.37 

598.32 

626.84 

633.06 

635.60 

633.23 

523.00 

524.63 

626.22 

627.00 

629.90 

645.24 

-7 

t 

1 

Table 3. Initial steady state controller set points 

Controller Set Point in Physical Units 

Overhead Receiver Pressure 760 mm Hg abs. 

Reflux Flow Rate 490.135 gpm. 

Overhead Receiver Level 3 ft. 

Base Level 8 ft 

StaRe 35 Temperature 626.22610~ 

Tat 

’ m Hg. abs 

760.00 

787.09 

797.59 

820.52 

842.98 

de 

! 
1 

4. Initial steac 

L moles/min. 

58.12 

56.09 

257.50 

258.01 

258.36 

260.70 

367.15 

367.82 

368.46 

369.08 

369.38 

285.00 

Iy ! 

1 
1 

rtate values of column variables 

,I, “j’Ji _O1_,&&j ,f, “,i sole2 

- 
81.37 

72.39 

72.91 

73.29 

74.18 

82.01 

82.68 

83.33 

83.96 

84.41 

82.18 

281.29 

19.71 

71.39 

72.27 

72.77 

73.80 

84.37 

84.40 

84.59 

04.69 

84.77 

3494.91 1 

1 

f 

3.00 

0.33 

0.54 

0.52 

0.51 

0.58 

1.08 

1.08 

1.08 

1.09 

1.07 

8.00 

E Btu.xlO 
-3 

831.28 

58.54 

186.83 

196.70 

200.32 

198.39 

222.18 

225.42 

228.58 

231.67 

234.90 

10236.91 

Table 5. 

Integration Parameters 

control procedure will not function properly unless the 
discontinuities are accounted for. Gallun (1979) gives 
other examples of the need to account for step changes 
in integration variables. 

The integration routine performance is given in Table 6 
and the responses of selected variables are shown in Figs. 
3 and 4. The variation in pressure shown in Fig. 4 is 
particularly interesting in that the models due to others 
reviewed in this paper assume constant stage pressures. 
Stagewise variation of column pressures can have an 
important effect when dealing with low pressure or 
vacuum columns. The integration procedure required 
about 170 set of AMDAHL 470 V/6 execution time to 
obtain the dynamic response for a period of about 2 hr. 
The various programs were compiled using extended 
Fortran H. 

Gallun (1979) solved another variation of this example 
problem involving both a feed change and a simultaneous 
temperature set point change. The techniques were also 
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step 
Number 

0 

9 

10 

31 

32 

60 

61 

110 

111 

124 

Table 6 ntegration rou Itin 

t 

(MiWJ@S) 

0.000 

1.024 

1.242 

10.013 

10.548 

21.292 

21.962 

82.502 

82.659 

121.959 

Integration 
Order 

1 0 0 

1 33 5 

2 36 5 

2 121 16 

3 124 16 

3 232 30 

2 234 30 

2 438 57 

1 440 57 

1 487 63 

e performance 

Cumul~tivc 
Function 
Evhmtlons 

1 1 I I I 1 

IO 20 30 40 50 60 10 60 so 
Tim-Minuhs 

Fig. 3. Response of bottom (Q,,) and distillate (Q) total flow rates. 

/--- PI 

750 - 

I , I I I 
IO 0 30 40 50 60 70 80 so 

Time-Minules 

Fig. 4. Response of receiver pressure (P,) and base pressure (PRO). 
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applied to unsteady state flash problems and distillation 
columns modeled under the assumption of constant stage 
molar holdup. All test problems were easily and 
efficiently solved. 

DlSCUSSIONOPTHECOMPLETEPROCEDURE 
The stage model defined by Eqs. (3.1)-(3.7), when 

solved directly be the Gear integration procedure, is a 
powerful and flexible procedure. The thermodynamic 
and hydraulic functions appearing in the model equations 
can be obtained directly from subroutines that may al- 
ready exist. This is possible because the model equations 
only require accurate evaluation of the function values 
not the partial derivatives of the functions with respect 
to the integration variables. Partial derivatives are only 
required as part of the Newton-Raphson procedure used 
to converge the nonlinear equations generated by Gear’s 
procedure. Thus the various partials can be ap- 
proximated, calculated numerically, or ignored without 
influencing the accuracy or stability of the integration 
procedure. The burden of calculating partial derivatives 
is further reduced because the Jacobian matrix is only 
evaluated when the convergence of Eqs. (4.43) and (4.44) 
becomes sluggish. 

Gear’s procedure for the simultaneous solution of 
differential and algebraic equations can also be applied 
for the solution of other basic stage models proposed in 
the literature. For example, the basic stage model pro- 
posed by Ballard et al. (1978) could be integrated directly 
without limiting the form of the thermodynamic or 
hydraulic functions and without undertaking the 
manipulations required to achieve a state variable for- 
mulation. The procedure described herein is not depen- 
dent on the particular stage model defined by Eqs. (3.1) 
(3.7) although these equations provide a model requiring 
minimal manipulation before integration. The procedure 
can also be easily extended to model processes where 
vapor phase holdup of material and energy must be 
considered. 

The key idea advocated in the procedures presented 
above is to write the model equations as a system of 
differential and algebraic equations to be solved with 
minimal alteration or manipulation. The same idea can be 
applied when developing dynamic models of auxiliary 
equipment such as reboilers and condensers. Gallun (1979) 
used these techniques in developing the reboiler and 
condenser models used in the numerical example. 

It should also be noted that the basic method is not 
tied to the formulation of Gear’s (1971~) procedure 
coded in DIFSUB but could be implemented with code 
derived from GEAR or EPISODE. 

NOMENCLATURE 

cross sectional area of the downcomer of tray j, square 
feet 

clearance area between the downcomer of the jth tray 
and the floor of tray j + 1, ft’ 

nominal cross sectional area of the zone above the 
of tray j, fta 

floor 

total hole area of tray j, ft* 
active area of tray j, ft* 
dense portion of a Jacobian matrix 
variable used to correct the predicted value of the 

differential variable 
value of b at t, 
vector of corrections 
predictor matrix 

Rk 
Ti 
1: 

TC 

total number of components. Also used to denote a 
controller input 

controller set point 
corrector coefficient vector 
discharge coefficient for stage j used in the calculation 

of the dry hole pressure drop 
Pascal triangle matrix 
variable used to correct the predicted value of an al- 

gebraic variable 
vector of corrections 
energy function for stage j; defined by Eq. (3.7) 
dE,/dt, time derivative of the energy function 
predictor matrix 
function of X and t; see Eqs. (2.1) and (4.1) 
vector of functions defined by Eqs. (4.41) or (4.43) 
total molar flow rate of the feed entering stage j 
flow controller 
stage j foam factor; defined by Eq. (B.6) 
function defined by Eq. (4.26) 
vector of functions defined by Eqs. 4.42 or 4.44 
function defined by Eq. (4.11) 
length of the time step used in integration procedure 
virtual value of the partial molar enthalpy of component 

i in the liquid leaving stage j 
virtual value of the partial molar enthalpy of component 

i in the vapor leaving stage j 
enthalpy per mole of liquid leaving stage j 
enthalpy per mole of vapor leaving stage j 
hi at tn 
enthalpy per mole of feed entering stage j 
dry hole pressure drop of the vapor across the per- 

formations of tray j, inches of equivalent vapor-free 
liquid 

head loss resulting from the flow of liquid under the 
downcomer of tray j to the floor of tray j+ 1, inches 
of vapor-free liquid 

height of liquid on the plate j, inches of vapor-free liquid 
height of liquid over the weir of plate j, inches of frothy 

liquid 
height of the outlet weir of stage j, inches 
integer used to count the number of components 
variable defined by Eq. (5.5) 
dddt, time derivative of I 
integer used as a subscript to indicate a variable or 

parameter depends on stage or tray number 
integer used to denote the order of Gear’s method; also 

used as an integer for counting the number of com- 
ponents 

controller gain 
ideal solution K value 
length of reactor 
length of the outlet weir of tray j, in. 
vector used in Gear’s method or lower triangular matrix 
ktb element. of L 
total flow rate of the liquid leaving plate j 
dydt, time derivative of the total molar flow rate 
Lj at In 
level controller 
vector used in Gear’s method 
molar flow rate of component i 
number of order of ht+’ 
pressure of stage j 
pressure controller 
output of controller; PO-reference output of the con- 

troller 
flow rate of liquid leaving stage j, gal per min 
transition matrix 
heat loss per unit length of reactor 
sparse portion of a Jacobian matrix 
vectors such that R&r = R 
temperature of stage j 
transition matrix 
temperature controller 
time j At = time step 
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upper triangular matrix 
total molar holdup on stage j 
d Uid t, time derivative of U, 
molar holdup of component i on stage j 
dJdt, time derivative of u, 
velocity of the vapor leaving stage j, ft per set 
velocity of the vapor through the performation on tray j, 

ft per set 
value of a variable at time tn 
total molar flow rate of the vapor leaving stage j 
d V,Idt time derivative of b 
V, at t, 

10. 

Il. 

volumetric holdup of liquid on stage j, cubic feet of 
clear liquid 

molar flow rate of component i in the vapor leaving 

12. 

13. 
stage j 

vector of dependent variables 
vector of predicted values of dependent variables 
mole fraction of component i in the liquid leaving stage 

int&ration variable defined by Eq. (2.1) 
value of X at tn 
dXIdt evaluated at t. 
kth time derivative of X 
mole fraction of component i in the feed entering on 

14. 

15. 

16. 

plate j 
mole fraction of component i in the vapor leaving stage 

he&t of liquid in the downcomer of plate j, feet of 

17. 

vapor-free liquid 18. 
distance between plate on stage j and j t 1, in. 
Nordsieck vector of the variables at time t. 
kth element of Z, 
Nordsieck vector of the predicted values of the vari- 

19. 

ables at time t, 
ratio of new step size to old 
jth parameter of Gear’s corrector of order k 
jth parameter of Gear’s predictor of order k 
vapor phase activity coefficient of component i of stage 

liqkd phase activity coefficient of component i of stage j 
parameter of Gear’s corrector of order k 
parameter of Gear’s predictor of order k 
truncation error 

20. 

21. 

22. 

23. 
24 adjustable parameter in the expressions for changing 

step size and order 
units conversion constant 
a predictor coefficient for algebraic variables 
mass density of the liquid leaving stage j 
mass density of the vapor leaving stage j 
molar density of the liquid leaving stage j 
molar density of vapor leaving stage j 
integral time constant 
departure function; defined by Eq. (5.2) 
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APPFiNDlx A 

Is the introduction of E really necessary? 
The stage enthalpy balance used in this paper is given by Eqs. 

(3.6) and (3.7). A natural question to ask is if it is really necessary 
to introduce Eq. (3.7) and the variable Ei? The answer is that a 
rigorous alternative is available that is totally compatible with .- . . . 
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Gear’s stiff procedure, but it may not be desueable to use tne 
alternative. Suppose Et is eliminated and the energy balance 
written as in Eq. (Al). Since {ug}, Tr and Pt are integration 
variables and /&i is an explicit function of these variables the 
chain rule can be applied to the derivative in Eq. (Al) yielding 
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advantages if the form of the enthalpy function is simple. The 
authors feel that the use of Ej does not introduce significant extra 
calculations and that Eqs. (3.6) and (3.7) should be retained. 
Another factor that favors the use of Eqs. (3.6) and (3.7) is that 
many thermodynamic packages are not set up to supply the 
partial derivatives required by Eq. (A7). Furthermore, when the 
new variable E, is introduced, the enthapies in Eq. (3.7) may be 
replaced by the internal energies to give the correct form for the 

Although this formidable expression suggests that an ap- energy holdup term. However, the use of enthalpies instead of 
proximation is in order, it may be simplified by use of relation- internal energies in Eq. (3.7) is both a good approximation and a 
ships presented by Aris (1%5) or by use of the following alter- convenient one. 
nate approach. The definition of the new variable E may be used to simplify 

Let hj denote the enthalpy per mole of mixture. Then it follows differential equations for systems other than those for distillation 
by the definition of a homogeneous function that columns. For example, a simple energy balance for a plug-flow 

reactor at steady state is given by Eq. (AS), where the in- 
c 

(7 > Uji hj dependent variable is reactor length, 1, and ni is the molar flow 
I= rate of component i in the direction of increasing 1. The quantity 

q, is the heat loss per unit length of the reactor, and is in general 
is homogeneous of degree one. Consequently, application of a function of various reactor variables. The expansion technique 
Euler’s theorem at constant temperature and pressure gives yields Eas. (A91 and (AlO). It should be noted that once the 

energy balance equations have been expanded, Michelsen’s pro- 
cedures (1976a, b) can also be applied if the appropriate partial 
derivatives are available. In order to correctly apply Michelsen’s 
procedures, it is necessary to calculate second partials of the first 

where the partial molar enthalpy of component k is defined by par&Is appearing in Eq. (A7). It is doubtful that existing ther- 
modynamic packages have this capability. 

(A4) d 2 n&i 
-tq=o 

dl (‘48) 

For convenience, let O=E- c a.L. 
E ” 

(A9) 

f((Uji}, T, P) = U&p (A9 dE 
o=;iT+q (AlO) 

Then by application of the chain rule APPENDM B 

d 
Tray hydraulic functions 

af af The correlations required to model the tray hydraulics of the 
dt =~Ujl+~U/2+~.* 

,I Jr. example problem were based on the relationships presented by 

+L?L(& +ar,,* . Van Winkle (1%7). The head loss of liquid flowing under the 

a% le aT app (W downcomer of tray j onto the floor of tray j t 1 is given by Eq. 
(Bl). The volumetric flow of liquid flowing under the jth down- 

From Eqs. (A.4), (AS), and (A.5), it follows that 
comer is given by Eq. (B2). 

2 

!2$=&~,i~ji+guji 
(Bf) 

a&&p 3 
Qj=y. (B2) 

I 

aT aP 646) 
The dry tray pressure drop is given by Eq. (B3) where the vapor 
velocity in the sieve tray perforations is calculated using Eq. 

This same result was obtained by Aris (1%5) in a slightly (B4). 
different manner. Then Eq. (Al) may be restated in the following 
form: 

(B3) 

(B4) 

The height of aerated liquid over the outlet weir of tray j is given 

>) 

by Eq. (BS). The foam factor or aeration factor for tray j liquid is 
(A7) given-by Eq. (B6) and is a function of the velocity of the vapor 

leavine the trav as defined bv Ea. (B7). The equivalent height of 

Thus Ej can be eliminated and an energy balance equation 
clear iquid on-tray j is given by Eq. (BE). 

consistent with Gear’s procedure obtained. The new energy 
balance equation requires only partial derivatives of the 
partial molar enthalpies with respect ot temperature and pres- 
sure. The elimination of the variable Er, and the reduction of the 
number of stage equations through the use of Eq. (A7) may offer 

2’3 UW 

.Frr = 1 0-O 372192 (U&jv)‘n)o.lmos . * . (B6) 



S. E. GALLUM and C. D. HOLLAND 

contained in the downcomer. Equation (B9) defines this relation- 
(B7) ship. 

(B@ 

The volumetric holdup of liquid on stage j is defined to be the 
sum of the equivalent clear liquid on the tray floor plus the liquid 

(B9) 


