The 8th Japan-China Workshop on Environmental Catalysis and Eco-Materials

Tsukuba International Congress Center, Tsukuba, Japan, December 5 – 6, 2017

Program

Plenary Lecture: 50 min including discussion Keynote Lecture: 25 min including discussion

Oral (General) Presentation: 15 min (presentation, 10 min; discussion, 5 min) Oral (Youth) Presentation: 10 min (presentation, 8 min; discussion, 2 min)

December 5 (Tuesday), 2017

8:30 – **Registration**

9:00 – 9:05 **Opening Remarks**

Plenary Session 1

(Chair: Prof. H. Yamashita, Osaka University)

9:05 – 9:55 PL-1: Water splitting and CO₂ reduction using photocatalyst and photoelectrode systems aiming at artificial photosynthesis

Akihiko Kudo (Tokyo University of Science)

9:55 – 10:15 **Coffee Break**

Youth Session 1

(Chair: Prof. Y. Chen, Chinese Academy of Sciences & Prof. H. Einaga, Kyushu University)

10:15-10:25 YO-1: Nanometric Rh overlayer formed on Fe-Cr-Al metal foils and its application to super high-density honeycomb catalysts

<u>Satoshi Misumi</u>¹, Yusuke Kuzuhara¹, Akinori Matsumoto¹, Hiroshi Yoshida^{1,2}, Tetsuya Sato¹, Masato Machida^{1,2} (¹Kumamoto University, ²ESICB, Kyoto University)

10:25 – 10:35 **YO-2:** Simulation on soot deposition in in-wall or on-wall catalyzed filter

Hyeonoh Kong, Kazuhiro Yamamoto (Nagoya University)

10:35 – 10:45 YO-3: PM oxidation of Ag-loaded perovskite-type oxide catalyst prepared by thermal decomposition of heteronuclear cyano-complex precursor

<u>Hiroki Takahashi</u>, Hiroyuki Yamaura, Makoto Fukuoka, Syuhei Yamaguchi, Hidenori Yahiro (Ehime University)

10:45 – 10:55 YO-4: A facile method to enhance the activity and durability of CeO₂-supported Pt nanocatalysts by tuning metal-support interaction

Zhentao Feng¹, Quanming Ren¹, Ruosi Peng¹, Bangfen Wan¹, Daiqi Ye^{1,2,3,4} (¹South China University of Technology, ²National Engineering Laboratory for the technologies and Equipments of VOCs Control, ³Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, ⁴Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal)

- 10:55 11:05 YO-5: *In situ* FT-IR study of three-way catalytic reaction over palladium catalysts supported on CeO₂-ZrO₂ based materials

 Yuuichiro Nakamura, Masaaki Haneda (Nagoya Institute of Technology)
- 11:05 11:15 YO-6: Hydrothermal stability of core-shell Pd@Ce_{0.5}Zr_{0.5}O₂/Al₂O₃ catalysts for automobile three-way reactions

 Lingcong Li¹, Ningqiang Zhang¹, Rui Wu¹, Guizhen Zhang¹, Wenge Qiu¹, Hong He^{1,2} (¹Beijing University of Technology, ²Collaborative Innovation Center of Electric Vehicles in Beijing)
- 11:15 11:25 YO-7: Structure-activity relationship of iron-based oxide for NO–C₃H₆–CO–O₂ reaction

 Kakuya Ueda, Junya Ohyama, Atsushi Satsuma (Nagoya University)
- ${\bf 11:25-11:35} \qquad {\bf YO-8} \quad {\bf Extraordinary} \quad {\bf localized} \quad {\bf surface} \quad {\bf plasmon} \quad {\bf resonances} \quad {\bf in} \\ {\bf plasmonic} \quad {\bf molybdenum} \quad {\bf tungsten} \quad {\bf oxide} \quad {\bf hybrid} \quad {\bf for} \quad {\bf visible-light-enhanced} \\ {\bf catalytic} \quad {\bf reaction} \\$

<u>Haibo Yin</u>¹, Yasutaka Kuwahara^{1,2}, Kohsuke Mori^{1,2,3}, Hefeng Cheng¹, Meicheng Wen¹, Yuning Huo⁴, Hiromi Yamashita^{1,2} (¹Osaka University, ²ESICB, Kyoto University, ³JST, PRESTO, ⁴Shanghai Normal University)

11:35-11:45 YO-9: Low-temperature NO_x trapping on alkali or alkaline earth metals modified TiO₂ photocatalysts

<u>Kazuki Tamai</u>¹, Saburo Hosokawa^{1,2}, Hiroyuki Asakura^{1,2}, Kentaro Teramura^{1,2}, Tsunehiro Tanaka^{1,2} (¹Kyoto University, ²ESICB, Kyoto University)

11:45 – 13:00 **Photo & Lunch**

Keynote Session 1

(Chair: Prof. H. He, Chinese Academy of Sciences & Prof. M. Ogura, Tokyo University)

13:00-13:25 KL-1: Design, preparation, and catalytic performance of the macropore-based catalysts for soot oxidation

Zhen Zhao^{1,2}, Yuechang Wei¹, Xuehu Yub², Jian Liu¹ (¹China University of Petroleum, ²Shenyang Normal University)

Youth Session 2

(Chair: Prof. H. He, Chinese Academy of Sciences & Prof. M. Ogura, Tokyo University)

13:25 – 13:35 YO-10: Cu/ZnO (0001) plate model catalyst for CO₂ hydrogenation to methanol under the realistic reaction condition: Strong metal-support interactions

<u>Yuhai Sun</u>, Chunlei Huang, Limin Chen, Daiqi Ye (South China University of Technology)

13:35-13:45 YO-11: Direct synthesis of methyl N-phenylcarbamates from CO₂, anilines and methanol using CeO₂ and 2-cyanopyridine

<u>Yu Gu</u>, Ayaka Miura, Masazumi Tamura, Yoshinao Nakagawa, Keiichi Tomishige (Tohoku University)

13:45 – 13:55 YO-12: Polyoxomolybdates catalysed cascade conversions of cellulose to glycolic acid with molecular oxygen via selective aldohexoses pathways (an epimerization and a [2+4] retro-aldol reaction)

Asep Bayu¹, Surachai Karnjanakom¹, Akihiro Yoshida^{1,2}, Katsuki Kusakabe³, Abuliti Abudula¹, Guoqing Guan^{1,2} (¹Hirosaki University, ²NJRISE, ³Sojo University)

- 13:55 14:05 YO-13: Hydrogenation of aqueous acetic acid from lignocellulosics for bioethanol production over Ru-Sn/TiO₂ with a flow-type reactor Kose Konishi, Yuanyuan Zhao, Haruo Kawamoto, Shiro Saka (Kyoto
- 14:05 14:15 **YO-14:** The effect of Keggin -Type heteropolymolybdate catalysts on low temperature NH₃-SCR

University)

<u>Rui Wu</u>^{1,2}, Hong He^{1,2,3}, Ningqiang Zhang^{1,2}, Lingcong Li^{1,2} (¹Key Laboratory of Beijing on Regional Air Pollution Control, ²Beijing University of Technology, ³Collaborative Innovation Center of Electric Vehicles in Beijing)

14:15 – 14:25 **YO-15:** The Synthesis of new zeolite; GeAPO-18 and the catalyst performance

<u>Kaito Ono</u>¹, Koji Miyake¹, Yuichiro Hirota¹, Yoshiaki Uchida¹, Shunsuke Tanaka², Manabu Miyamoto³, Norikazu Nishiyama¹ (¹Osaka University, ²Kansai University, ³Gifu University)

Keynote Session 2

(Chair: Prof. H. He, Chinese Academy of Sciences & Prof. M. Ogura, Tokyo University)

14:25 – 14:50 **KL-2:** Improvement of automotive catalysts at low temperature with highly durable zeolites

<u>Yoshinori Endo</u>¹, Joe Nishikawa¹, Hironori Iwakura¹, Masaaki Inamura¹, Takashi Wakabayashi¹, Yunosuke Nakahara¹, Masataka Ogasawara², Sumio Kato² (¹Mitsui Mining & Smelting Co., Ltd., ²Akita University)

14:50 – 15:50 Coffee Break & Poster Session

Keynote Session 3

(Chair: Prof. Y. Zhu, Tsinghua University & Prof. A. Satsuma, Nagoya University)

15:50 – 16:15 **KL-3: High efficient Pd/TiO₂ catalyst for catalytic oxidation of formaldehyde at ambient temperature**

<u>Changbin Zhang</u>¹, Yaobin Li², Hong He^{1,2} (¹Research Center for Ecoenvironmental Sciences, Chinese Academy of Sciences, ²Institute of Urban Environment, Chinese Academy of Sciences)

General Session 1

(Chair: Prof. Y. Zhu, Tsinghua University & Prof. A. Satsuma, Nagoya University)

16:15 – 16:30 **GO-1:** A scalable and "Green" approach for the syntheses of inorganic nano-catalysts for air pollution control

<u>Xiaole Weng</u>, Shuang Cao, Zhongbiao Wu (Zhejiang University)

16:30 – 16:45 **GO-2:** Catalytic oxidation of toluene over metal-organic frameworks with encapsulated noble-metal nanoparticles

Hui He¹, Mingli Fu^{1,2,3}, Xueting Lin¹, Daiqi Ye^{1,2,3}, Yun Hu¹, William Wen⁴ (¹South China University of Technology, ²National Engineering Laboratory for the technologies and Equipments of VOCs Control, ³Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, ⁴Griffith University)

16:45 – 17:00 **GO-3: Pd/mesoporous CoO nanocatalysts with high performance for** *o***-xylene combustion**Shaohua Xie¹, <u>Yuxi Liu</u>¹, Jiguang Deng¹, Jun Yang¹, Xingtian Zhao¹, Zhuo Han¹, Kunfeng Zhang¹, Yuan Wang², Hamidreza Arandiyan², Hongxing Dai¹

(¹Beijing University of Technology, ²The University of New South Wales)

17:00 – 17:15 **GO-4:** Novel nanowire self-assembled hierarchical CeO₂ microspheres for low temperature toluene catalytic combustion
Fangyun Hu¹, Jianjun Chen¹, Yaqing Zhang¹, Yue Peng¹, Hua Song¹, Kezhi

Li¹, Junhua Li^{1,2} (¹Tsinghua University, ²State Key Joint Laboratory of Environment Simulation and Pollution Control)

17:15 – 17:30 GO-5: New class of two-dimensional transition-metal compound nanoplatelets for electrochemical energy storage

Zhiting Liu, Yao Chen (Guangzhou University)

17:30 – 17:45 **GO-6: Plasma-assisted catalytic reaction for air purification - Effect of catalyst composition and reactor configuration on benzene oxidation -**Shoma Hamada, Yusuke Nagai, Hajime Hojo, <u>Hisahiro Einaga</u> (Kyushu University)

18:00 – 20:00 **Banquet**

December 6 (Wednesday), 2017

Plenary Session 2

(Chair: Prof. F. Xiao, Zhejiang University)

9:00 – 9:50 PL-2: Designed complex micro-structure catalysts for highly efficient removal of NO_x and volatile organic compounds (VOCs)

Junhua Li (Tsinghua University)

General Session 2

(Chair: Prof. W. Shangguan, Shanghai Jiao Tong University & Prof. K. Shimizu, Hokkaido University)

- 9:50 10:05 **GO-7: Separation-free photocatalyst with 3D hierarchical structure**Yongfa Zhu (Tsinghua University)
- 10:05 10:20 **GO-8:** Red phosphorus decorated g-C₃N₄ hybrid nanosheets as a widespectral-responsive photocatalyst for hydrogen evolution from water Wanjun Wang¹, Taicheng An¹, Guiying Li¹, Jimmy C. Yu² (¹Guangdong University of Technology, ²The Chinese University of Hong Kong)
- 10:20 10:40 **Coffee Break**
- 10:40 10:55 **GO-9: Photocatalytic enhancement of H₂ production from hydrogen carrier molecules over visible-light-responsive MOF**Meicheng Wen¹, Yasutaka Kuwahara^{1,2}, Kohsuke Mori^{1,2,3}, <u>Hiromi Yamashita</u>^{1,2} (¹Osaka University, ²ESICB, Kyoto University, ³JST, PRESTO)
- 10:55 11:10 **GO-10: Versatile photocatalytic technology in environmental purification of biohazards and organic pollutants in water and air**<u>Taicheng An, Guiying Li, Jiangyao Chen, Hongli Liu, Wanjun Wang</u>

 (Guangdong University of Technology)
- 11:10 11:25 **GO-11: Design preparation of highly efficient heterogeneous catalysts for CO₂ cycloaddition and HCHO oxidation at room temperature**Qi Sun, Ling Zhang, Xiangju Meng, Feng-Shou Xiao (Zhejiang University)

Keynote Session 4

(Chair: Prof. W. Shangguan, Shanghai Jiao Tong University & Prof. K. Shimizu, Hokkaido University)

11:25 – 11:50 KL-4: Metal-modified ReO_x/CeO₂ catalysts for deoxydehydration of vicinal OH groups in biomass-related substrates

Keiichi Tomishige (Tohoku University)

Keynote Session 5

(Chair: Dr. T. Nanba, AIST & Prof. M. Haneda, Nagoya Institute of Technology)

13:00 – 13:25 KL-5: Selective transformation of various nitrogen-containing exhaust gases towards N₂ over zeolite catalysts

Runduo Zhang, Ning Liu, Dongjun Shi, Ruinian Xu, Perixin Li (Beijing University of Chemical Technology)

General Session 3

(Chair: Dr. T. Nanba, AIST & Prof. M. Haneda, Nagoya Institute of Technology)

13:25 – 13:40 GO-12: Interface effect of mixed phase Pt/ZrO₂ catalyst for HCHO oxidation at ambient temperature

Xueqin Yang, <u>Xiaolin Yu</u>, Mengya Lin, Maofa Ge (Institute of Chemistry, Chinese Academy of Sciences)

13:40 – 13:55 GO-13: CO₂-assisted fabrication of hierarchical N-doped TiO₂@C from metal-organic frameworks for enhanced photocatalytic oxidation of VOCs

<u>Hongli Liu</u>, Jiangyao Chen, Guiying Li, Taicheng An (Guangdong University of Technology)

13:55 – 14:10 GO-14: Effective oxygen storage and release performances of Pt/CeO₂-ZrO₂ catalysts

<u>Fei Dong</u>, Toshitaka Tanabe, Naoki Takahashi, Hirofumi Shinjoh (Toyota Central R&D Labs., Inc.)

- 14:10 14:25 **GO-15: Core-shell catalysts with silver confined by porous alumina have** exceptional thermal stability and ultrahigh soot oxidation activity Shuang Liu, Houlin Wang (Ocean University of China)
- 14:25 14:40 **GO-16: Promoting effect of Au on Pd/TiO₂ catalyst for the selective catalytic reduction of NO_x by H₂**Kaijiao Duan, Wenjun Cai, Zhiming Liu (Beijing University of Chemical Technology)
- 14:40 14:55 **GO-17: Improvement of low temperature hydrothermal stability of one- pot synthesized Cu-SAPO-34 for NH₃-SCR reduction of NO_x by cerium**Xiaoyan Shi^{1,3}, Can Niu^{1,3}, Hong He^{1,2,3} (¹Research Center for EcoEnvironmental Sciences, Chinese Academy of Sciences, ²Institute of Urban
 Environment, Chinese Academy of Sciences, ³University of Chinese
 Academy of Sciences)

14:55-15:10 GO-18: The promotional role of Nd on Mn/TiO₂ catalyst for the low-temperature NH₃-SCR of NO_x

Jun Huang^{1,2,3}, Licheng Liu¹, Hongtao Jiang^{2,3} (¹Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, ²Zhejiang Province Key Laboratory of Biofuel, ³Zhejiang University of Technology)

15:10 – 15:30 **Coffee Break**

Keynote Session 6

(Chair: Prof. Z. Zhao, China University of Petroleum & Prof. M. Haneda, Nagoya Institute of Technology)

15:30 – 15:55 **KL-6: Hydrogen storage catalysis for effective usage of renewable energy**<u>Tetsuya Nanba</u> (National Institute of Advanced Industrial Science and Technology)

General Session 4

(Chair: Prof. Z. Zhao, China University of Petroleum & Prof. M. Haneda, Nagoya Institute of Technology)

15:55 – 16:10 GO-19: *In situ* UV-vis observation of Cu²⁺/Cu⁺ redox cycle in Cu-zeolites during NH₃-SCR

<u>Ken-ichi Shimizu</u>¹, Takehiro Amada¹, Ken-ichi Kon¹, Takashi Toyao¹, Kakuya Ueda², Junya Oyama², Atsushi Satsuma² (¹Hokkaido University, ²Nagoya University)

16:10 – 16:25 GO-20: Using impregnation—activation method on Cu-SAPO-34 for NH₃-selective catalytic reduction: Precise control of quantity and nature of copper active sites

Zhenwei Wu^{1,2}, <u>Rui Ran</u>¹, Yue Ma¹, Xiaodong Wu¹, Zichun Si³, Duan Weng¹ (¹Tsinghua University, ²Purdue University, ³Advanced Materials Institute, Tsinghua University)

16:25 – 16:40 GO-21: Copper-amine complex assisted one-pot synthesis of Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NO_x by NH₃

Ying Xin¹, Qian Li¹, Lirong Zheng², James A. Anderson³, Zhaoliang Zhang¹ (¹University of Jinan, ²Institute of High Energy Physics, Chinese Academy of Sciences, ³University of Aberdeen)

16:40 - 16:55	GO-22: Tunable morphological transformation of flexible and
	monolithic structured catalysts through in situ growth Co ₃ O ₄ nanoarrays
	on Ni foam for CO oxidation
	Shuangde Li ¹ , Shengpeng Mo ^{1,2} , Ning Han ¹ , Yunfa Chen ¹ (¹ Institute of
	Process Engineering, Chinese Academy of Sciences, ² South China University
	of Technology)
16:55 – 17:10	GO-23: Covalent organic frameworks and porous polymers for
	electrochemical oxygen reduction
	Subhabrata Banerjee, Yuta Nabae (Tokyo Institute of Technology)
17:10 – 17:25	GO-24: Selective hydrogenation of palm oil-derived biodiesel fuels over
	supported Pd catalysts to H-FAME for high-blend fuels

Hideyuki Takagi¹ (¹National Institute of Advanced Industrial Science and Technology, ²Thailand Institute of Scientific and Technological Research)

17:25 – 17:40 GO-25: Hydrocracking of algae oil to aviation fuel-ranged hydrocarbons over NiMo catalysts supported on polyoxocation-pillared clays

Yanyong Liu, Megumu Inaba, Kazuhisa Murata (National Institute of Advanced Industrial Science and Technology)

Shih-Yuan Chen¹, Lalita Attanatho², Takehisa Mochizuki¹, Masayasu Nishi¹,

17:40 – 17:45 **Closing Remarks**

December 7 (Thursday), 2017

Excursion

Poster Program, December 5 (Tuesday), 2017

15:10 - 16:10

P01 Environmental catalysis and material research works published in Journal of Environmental Sciences

<u>Qingcai Feng</u>, Kuo Liu, Suqin Liu, Zixuan Wang, Jian Xu (Editorial Office of Journal of Environmental Sciences)

P02 Effect of CO₂ and siloxane on hydrogen production by methane decomposition using Fe-supported alumina catalysts

Megumu Inaba, Zhanguo Zhang, Koichi Matsuoka (National Institute of Advanced Industrial Science and Technology)

P03 A comprehensive study on the behavior of Ru catalyst for ammonia synthesis Rahat Javaid, Tetsuya Nanba (National Institute of Advanced Industrial Science and Technology)

P04 Development of amine functionalized dual heterogeneous catalyst for interconversion of formic acid and CO₂

Shinya Masuda¹, Kohsuke Mori^{1,2,3}, Hiromasa Tanaka⁴, Kazunari Yoshizawa^{3,4}, Hiromi Yamashita^{1,3} (¹Osaka University, ²JST, PRESTO, ³ESICB, Kyoto University, ⁴Kvushu University)

P05 Syntheses of organozirconium complexes with Keggin-type mono- and dialuminum-substituted polyoxotungustates and catalytic performances for esterification of fatty acids

<u>Akari Kondo</u>¹, Tsukasa Ogasawara¹, Shunsaku Suzuki¹, Chika Kato^{1,2} (¹Shizuoka University, ²Research Institute of Green Science and Technology, Shizuoka University)

P06 Gas-phase dehydration of glycerol to acrolein catalyzed by combination of two sources of Brønsted acid sites

Xin Ren^{1,2}, Nailiang Wang¹, <u>Licheng Liu</u>¹ (¹Qingdao Institute of Bioenergy and BioprocessTechnology, Chinese Academy of Sciences, ²Ocean University of China)

P07 Development of innovative process for multi-dimensional utilization of methane with microwave heating

Hiroya Ishimaru¹, Mai Hasegawa¹, Narumi Yoshida¹, Minoru Umeda², Mitsuhiro Inoue³, Hiroya Ishikawa⁴, Ryo Saito⁵, Shogo Nakagawa⁵, Fumihiro Kodera¹, Akihiko Miyakoshi¹ (¹National Institute of Technology, Asahikawa College, ²Nagaoka University of Technology, ³University of Toyama, ⁴Osaka University, ⁵Hokkaido University)

P08 Evaluation of cerium doped perovskites $(Ce_{0.1}Sr_{0.9})_xCo_{0.3}Fe_{0.7}O_{3-\delta}$ as cathode materials for solid oxide fuel cell

<u>Pairuzha Xiaokaiti</u>¹, Tao Yu¹, Akihiro Yoshida^{1,2}, Guoqing Guan^{1,2}, Abuliti Abudula¹ (¹Hirosaki University, ²NJRISE, Hirosaki University)

P09 Toluene hydrogenation over Ni catalyst under fluctuating supply of hydrogen

<u>Xieli Cui</u>, Ryousuke Atsumi, Hideyuki Matsumoto, Tetsuya Nanba (National Institute of Advanced Industrial Science and Technology)

P10 Conversion of levulinic acid to γ-valerolactone over Cu-Ni catalysts

Rei Yoshida, Satoshi Sato, Yasuhiro Yamada (Chiba University)

P11 Comparative study on thermal stability between Pd doped and loaded ceria based three-way catalysts

<u>Guizhen Zhang</u>, Yaoyao Li, Ziwen Liu, Wensheng Li, Hong He, Liyun Song, Wenge Qiu (Beijing University of Technology)

P12 Effect of chemical compositions of Ni-Ga- O_x on automotive three way catalytic

reduction

<u>Masaki Ohshima</u>¹, Kakuya Ueda¹, Junya Ohyama^{1,2}, Atsushi Satsuma^{1,2} (¹Nagoya University, ²ESICB, Kyoto University)

P13 Promoted OSC performance of CeO₂-ZrO₂ by doping transition metal and three-

way catalytic activity of supported Pd catalysts

Kento Kusatsugu, Masaaki Haneda (Nagoya Institute of Technology)

P14 Activity controlling factors of NO-CO reaction over MCo₂O₄

<u>Masashi Tsuji</u>¹, Kakuya Ueda¹, Junya Ohyama^{1,2}, Atsushi Satsuma^{1,2} (¹Nagoya University, ²ESICB, Kyoto University)

P15 Oxygen storage property and chemical stability of SrFe_{1-x}Ti_xO_{3-δ}

<u>Akito Demizu</u>¹, Kosuke Beppu¹, Saburo Hosokawa^{1,2}, Hiroyuki Asakura^{1,2}, Kentaro Teramura^{1,2}, Tsunehiro Tanaka^{1,2} (¹Kyoto University, ²ESICB, Kyoto University)

P16 Effect of TiO₂ crystalline structure for NO-CO-H₂O reaction using Pt/TiO₂

catalyst

<u>Keisuke Kobayashi</u>¹, Tetsuya Nanba² (¹University of Yamagata, ²National Institute of Advanced Industrial Science and Technology)

P17 Activation energy calculation of NO-CO reaction on rhodium surface by density functional theory

Taisei Ito, Yukihiro Shimizu (Tohoku University)

P18 Unique OSC performance of cerium oxide synthesized by dealloying oxidation method

Rongguang Gan¹, Man Zhang², Takashi Kuwahara³, Naoki Asao^{2,3}, Masaaki Haneda¹ (¹Nagoya Institute of Technology, ²Tohoku University, ³Shinshu University)

P19 Selective catalytic reduction of NO with CO and C₃H₆ over Rh/NbOPO₄ Shinsuke Imai¹, Hiroki Miura^{1,2,3}, Tetsuya Shishido^{1,2,3} (¹Tokyo Metropolitan University, ²Research Center for Hydrogen Energy-Based Society, Tokyo

P20 Three way activities of low-content Pt catalysts supported by CeO₂ nanoparticles and core-shell type CeO₂/ZrO₂

Metropolitan University, ³ESICB, Kyoto University)

Masakuni Ozawa¹, Masaki Misaki², Masaki Iwakawa², Katsutoshi Kobayashi¹, Masatomo Hattori¹ (¹IMass, Nagoya University, ²Nagoya University)

P21 Photoelectrocatalytic inactivation and elimination of antibiotic-resistance E. coli S1-23 bacteria and its antibiotic-resistance genes Guiying Li, Hongliang Yin, Taicheng An (Guangdong University of Technology)

- P22 The oriented adsorption and simultaneous removal of Cr(VI) and RhB pollutants on Pd@MIL-101/P25 photocatalyst

 Jinhui Zhang, Peipei Cui, Yun Hu, Mingli Fu (South China University of Technology)
- P23 Graphene regulated solar-light-driven photocatalytic degradation mechanism revelation of gaseous styrene on TiO₂ based on intermediates quantification

 Jiangyao Chen, Zilong Zhang, Guiying Li, Taicheng An (Guangdong University of Technology)
- P24 Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi₂O₃TiO₂ composite photocatalyst under visible light

 Yun Hu, Suzhen You, Xingchen Liu (South China University of Technology)
- P25 Hydrogen evolution from aqueous triethanolamine solution under visible-light irradiation using Keggin-type platinum(II)-coordinated polyoxotungstates as cocatalysts

<u>Shunsaku Suzuki</u>¹, Chika Kato^{1,2}, Rie Yamashita³ (¹Shizuoka University, ²Research Institute of Green Science and Technology, Shizuoka University, ³Industrial Research Institute of Shizuoka Prefecture)

- P26 Enhanced photocatalytic degradation and disinfection activity of oxidized nanoporous g-C₃N₄ by loading Ag nanoparticles under visible light illumination Jing Xu^{1,2}, Qiuzhu Gao^{1,2}, Zhouping Wang^{1,2} (¹State Key Laboratory of Food Science and Technology, Jiangnan University, ²School of Food Science and Technology, Jiangnan University)
- P27 Removal of VOCs by post-plasma catalysis over Co-Mn oxides

 Zhixiang Zhang¹, Xin Yao¹, Yizhuo Li², Wenfeng Shangguan¹ (¹Shanghai Jiao Tong
 University, ²Shenyang Academy of Environmental Sciences)

Controllable synthesis of 3D hierarchical Co₃O₄ nanocrystals with various

P28

- morphologies for toluene catalytic oxidation

 Quanming Ren¹, Shengpeng Mo¹, Ruosi Peng¹, Zhentao Feng¹, Daiqi Ye^{1,2,3} (¹South China University of Technology, ²Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, ³National Engineering Laboratory for the technologies and Equipments of VOCs Control)
- P29 Pt_xCo/meso-MnO_y: Highly efficient catalysts for low-temperature methanol combustion

 Jun Yang, Yuxi Liu, Jiguang Deng, Shaohua Xie, Zhiquan Hou, Xingtian Zhao,

Jun Yang, Yuxi Liu, Jiguang Deng, Shaohua Xie, Zhiquan Hou, Xingtian Zhao Kunfeng Zhang, Zhuo Han, <u>Hongxing Dai</u> (Beijing University of Technology)

- P30 Pd-GaO_x/Al₂O₃: High-performance catalysts for methane combustion
 Zhiquan Hou, Yuxi Liu, <u>Jiguang Deng</u>, Shaohua Xie, Xingtian Zhao, Kunfeng Zhang,
 Zhuo Han, Jun Yang, Hongxing Dai (Beijing University of Technology)
- P31 The influence of dispersibility of copper oxide species on the state and CO oxidation activity

 Masatomo Hattori¹, Masaaki Haneda², Masakuni Ozawa¹ (¹IMass, Nagoya University,
 ²Nagoya Institute of Technology)
- P32 The investigation of CO catalytic oxidation mechanism over the Pt/MnO_x catalysts

 Ningqiang Zhang, Lingcong Li, Rui Wu, Guizhen Zhang, Wenge Qiu, Hong He

(Beijing University of Technology)

P33 Functionalization of metal-organic frameworks by encapsulating noble-metal nanoparticles towards toluene oxidation

Mingli Fu^{1,2,3}, Hui He¹, Xueting Lin¹, Daiqi Ye^{1,2,3}, Yun Hu^{1,2,3}, William Wen⁴ (¹South China University of Technology, ²National Engineering Laboratory for the technologies and Equipments of VOCs Control, ³Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, ⁴Griffith University)

P34 Effect of lanthanide-doping into Pt/CeO₂ catalysts for the catalytic oxidation of toluene

Ruosi Peng¹, <u>Daiqi Ye</u>^{1,2,3} (¹South China University of Technology, ²National Engineering Laboratory for the technologies and Equipments of VOCs Control, ³Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control)

P35 Shape dependence of nanoceria on completely catalytic oxidation of o-xylene

Lian Wang¹, Yunbo Yu^{1,2,3}, Hong He^{1,2,3}, Shaoxin Wang¹ (¹Research Center for Ecoenvironmental Sciences, Chinese Academy of Sciences, ²Institute of Urban Environment, Chinese Academy of Sciences, ³University of Chinese Academy of Sciences)

P36 Effects of Fe doping to α-Mn₂O₃ catalyst on oxidation reaction of soot in diesel exhaust

<u>Akihiro Fujibayashi</u>¹, Yasutaka Kuwahara^{1,2}, Kohsuke Mori^{1,2,3}, Hiromi Yamashita^{1,2} (¹Osaka University, ²ESICB, Kyoto University, ³JST, PRESTO)

P37 Ozone-enhanced complete catalytic oxidation of toluene over platinum-cerium supported high silica BEA zeolite

Hailin Xiao, Junliang Wu, Daiqi Ye (South China University of Technology)

P38 C₃H₆ combustion over Mn-modified hexagonal YbFeO₃

<u>Shogo Matsumoto</u>¹, Takuya Shibano¹, Saburo Hosokawa^{1,2}, Hiroyuki Asakura^{1,2}, Kentaro Teramura^{1,2}, Tsunehiro Tanaka^{1,2} (¹Kyoto University, ²ESICB, Kyoto University)

P39 H₂O and SO₂ effect on elimination of NO over V₂O₅/TiO₂ catalysts preferentially exposed anatase {001} and {101} facets

<u>Liyun Song</u>¹, Ran Zhang¹, Hong He^{1,2}, Wenge Qiu¹, Guizhen Zhang¹ (¹Beijing University of Technology, ²Collaborative Innovation Center of Electric Vehicles in Beijing)

P40 Synthesis of Co doped Mn/Al₂O₃-TiO₂ catalysts and their catalytic activity for NO removal

Hong Liang, Tingwen Tan, Yimeng Mou, Shuhua Li, Zhiwei Qiao (Guangzhou University)

P41 Promoting effect of organic ligand on the performance of ceria for the selective catalytic reduction of NO by NH₃

Mengqi Yin, Wenge Qiu, Shining Li, Yun Chen, Guizhen Zhang, Hong He (Beijing University of Technology)

P42 Promoting effect of iron modification on NO oxidation over single phase α -MnO₂ or γ -MnO₂ catalysts

<u>Jingbo Jia</u>¹, Rui Ran¹, Xiaodong Wu², Duan Weng², Xingguo Guo¹ (¹Key Laboratory of Advanced Materials, Tsinghua University, ²State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University)

P43 In situ characterization of Cu-zeolites for NH₃-SCR

<u>Takehiro Amada</u>¹, Ken-ichi Kon¹, Takashi Toyao¹, Kakuya Ueda², Junya Oyama², Atsushi Satsuma², Ken-ichi Shimizu¹ (¹Hokkaido University, ²Nagoya University)

P44 Effect of oxide supports on NO reduction over platinum-group metal catalysts: A computational study

<u>Hiroaki Koga</u>¹, Akihide Hayashi², Yoshinori Ato², Kohei Tada³, Saburo Hosokawa^{1,4}, Mitsutaka Okumura^{1,2} (¹ESICB, Kyoto University, ²Osaka University, ³National Institute of Advanced Industrial Science and Technology, ⁴Kyoto University)

P45 The dechlorination effect of chlorobenzene on catalytic performance of vanadium-based catalysts for low-temperature NH₃-SCR: an *in situ* DRIFTS study

Dong Wang, Yue Peng, <u>Jun-hua Li</u> (Tsinghua University)

P46 Preparation of Al₂O₃-SiO₂ porous material and the effect on NO decomposition in cement kiln

<u>Yanling Gan</u>, Suping Cui, Hongxia Guo, Xiaoyu Ma, Yali Wang (Beijing University of Technology)