酸化マグネシウムの物理化学的特性評価

羽田政明*・加藤聖崇*・境 昭二**
*名古屋工業大学先進セラミックス研究センター 〒 507-0071 岐阜県多治見市旭ヶ丘 10-6-29
** 宇部マテリアルズ株式会社
〒 755-8510 山口県宇部市大字小串 1985 番地

Evaluation of Physico-Chemical Properties of Magnesium Oxide

Masaaki Haneda*, Kiyotaka Kato*, Shouji Sakai**

* Advanced Ceramics Research Center, Nagoya Institute of Technology 10-6-29, Asahigaoka, Tajimi, Gifu 507-0071, JAPAN
** Ube Material Industries, Ltd.
1985, Kogushi, Ube, Yamaguchi 755-8510, JAPAN

This article describs physico-chemical properties of magnesium oxides supplied from Ube Material Industries, Ltd. as a catalyst material for controlling plant diseases. Not only structural characterizations such as X-ray diffraction (XRD) and N_2 adsorption/desorption isotherms but also surface characterization techniques such as temperature-programmed desorption (TPD), *in situ* Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) are introduced. The knowledges reported in this article are expected to be utilized for research and development of various functional materials.

Keywords: Magnesium oxide, Surface characterizations

1. はじめに

酸化マグネシウム (マグネシア: MgO) は、高い熱 伝導特性と絶縁性から樹脂用フィラーやセラミックス用 焼結助剤などのセラミックス原料のほか、肥料や土壌改 良剤、医薬用・化粧品用の原料など、様々な用途に利用 されている。工業的製法の一つとして海水に溶解してい る Mg²⁺を生石灰と反応させて得られる水酸化マグネシ ウム (Mg(OH)₂)を精製・熱処理する方法があり、ま た熱処理温度を変えることで活性度の異なる酸化マグネ シウム (活性な軽焼マグネシア、不活性な重焼マグネシ ア)を得ることができる^{1),2)}。

比較的低い温度で熱処理した酸化マグネシウムは高い 比表面積を有し、吸着剤や触媒などの表面を利用する機 能性材料として広く研究されている。特に触媒としては 代表的な固体塩基触媒であり、表面構造と塩基性の関連 性や触媒機能発現メカニズムなどの詳細な検討が盛んに 行われてきている³⁻⁶⁾。清浄化された酸化マグネシウム 表面には配位数の異なる数種の $Mg^{2+} - O^2 - (1)$ ステップなどの配位数の小さい(配位不飽和サイト) $Mg^{2+} - O^2 - (1)$ が強い塩基性を示すと考えら れている。しかし、その強い塩基性のため、大気に曝す と表面は水分や二酸化炭素を強く吸着し不活性となって しまうため、活性化のための熱処理条件の最適化が重要 となってくる 4 。

最近、宇部マテリアルズ(株)と山口大学および山口 県農林総合技術センターの研究グループから酸化マグネ シウムに植物免疫作用があることが発表された⁷⁾。400 ~1000℃で熱処理された酸化マグネシウムの水懸濁液 を植物の根部及び株元に散布することでトマトの青枯病 などの土壌病害を抑制する効果があるとされている。酸 化マグネシウムの役割としては、表面塩基点で生成する 活性酸素種が発病に関わる不飽和脂肪酸からの水素原子 引き抜きに効果があり、不飽和脂肪酸の分解反応に触媒 的に作用する可能性が指摘されている。しかし、植物病 害防除剤には大気に曝された状態の酸化マグネシウムが 利用されており、上述のように活性な表面塩基点は水分 や二酸化炭素により被毒されているため、塩基点の作用 により植物免疫作用が発現できるかどうか不明である。 本稿では、酸化マグネシウムが植物免疫作用を発現する 要因を探るために宇部マテリアルズ(株)提供の酸化マ グネシウムの物理化学的特性を評価するための手法と評 価結果を紹介する。酸化マグネシウムの性能と関連する 不飽和脂肪酸の吸着・反応性を解析するための基礎デー タとして活用する。

2. 酸化マグネシウム試料

Table1 に評価した酸化マグネシウムをまとめる。本 研究では製造方法の異なる2種類の酸化マグネシウム を用いた。

海水中の Mg^{2+} イオンと生石灰を反応させることで得 られる水酸化マグネシウムがUD-650である。UD-650 を空気中、550~1000℃で焼成することにより、 UGK-x(x:焼成温度)を作製した。なお、UGK-800 はUCM-200として、UGK-1000はUC-95Sとして、 宇部マテリアルズ(株)にて製造されている。

高純度の金属マグネシウム蒸気を酸素雰囲気中で気相 酸化反応することにより製造した 40 ~ 50 nm の粒子径 を有する酸化マグネシウム単結晶(純度 99.98%)が 500A である。

3. 結晶構造

作製した試料の結晶相を調べるため X 線回折測定(リ ガク(株) MiniFlex II、CuK a線)を行った。Fig. 1 に 示すように、UD-650の主な結晶相は Mg(OH)₂、500A では MgO であった。UD-650を550℃で焼成すること により(UGK-550)、Mg(OH)₂の一部が MgO に分解 され、さらに700℃以上での焼成により結晶相は MgO の単相となり、また焼成温度とともに粒子が成長する様 子が明らかになった。X 線回折測定から明らかになった 結晶相と MgO の(200)面のピーク半値幅からシェラー 式により算出した結晶子径を Table 1 にまとめる。

4. 比表面積と細孔構造

マイクロトラック・ベル(株)のBELSORP-mini-II を用いて、液体窒素温度での窒素吸着等温線を測定し、

BET 法による比表面積の評価と BJH 法による細孔径分 布の解析を行った。なお試料前処理として 300℃ での真 空排気処理を行ったが、UD-650は別途測定した TG/ DTA より 300℃以上で Mg(OH), の分解が起こること が明らかになったことから前処理温度を200℃とした。 Fig.2に吸着等温線を示す。図から明らかなように UD-650 (●) は IV 型の吸着等温線を示し、メソ孔の存在 が示唆され、一方、500A(◇)はⅡ型の吸着等温線か ら無孔性であることがわかった。焼成温度が異なる UGK-xでは、550~800℃で焼成した場合には IV 型の 吸着等温線が得られたが (○, ▲, □)、焼成温度が高く なるとともに II 型に近づき、900℃以上で焼成すること でII型の吸着等温線になった (◆, △)。Fig. 3 には BJH 法で解析した細孔径分布を示す。吸着等温線から 推察されたように 500A (◇) はほとんど細孔を持たな い。一方、UD-650(●) はメソ孔領域に細孔を有して おり、550℃で焼成することによりメソ孔径が変化せず に細孔の数が増加することがわかった(O)。700~ 800℃に焼成温度を高くすることで細孔分布がブロード になり、また細孔径が大きくなることもわかった (▲、 □)。これは熱処理による粒子の焼結によるものであり、 900℃以上で焼成することでさらに粒子の焼結が進み、 ほとんどの細孔が消失した (\blacklozenge , \bigtriangleup)。Table 1 に BET 法 で算出した比表面積をまとめる。500Aは細孔を有しな いものの比較的高い比表面積を有しているが、これは 40~50 nm の微小粒子から構成されていることによる ものである。UD-650 では 550℃での焼成により比表面 積は増大し、700℃以上の焼成により比表面積は徐々に 低下した。

Fig. 2 N₂ adsorption/desorption isotherms of magnesium oxides.

羽田政明·加藤聖崇·境 昭二

Sample	Calcination temperature / °C	Crystal phase	Crystallite size of MgO / nm	BET surface area / m ² g ⁻¹	Mean pore radius / nm
UD-650	n.a.	Mg(OH) ₂	n.a.	22.2	1.93
UGK-550	550	Mg(OH) ₂ , MgO	8.1	195	1.93
UGK-700	700	MgO	12.4	92.2	6.95
UGK-800	800	MgO	17.4	40.1	14.0
UGK-900	900	MgO	29.0	16.1	
UGK-1000	1000	MgO	37.7	7.1	
500A	n.a.	MgO	36.8	32.9	

Table.1 Summary of structural properties of magnesium oxides.

Fig.3 Pore size distribution of magnesium oxides in mesopore region determined by BJH method.

5. 清浄な酸化マグネシウムの表面状態

5.1. 吸着 CO₂種の *in situ* FT-IR スペクトル 酸化マグネシウムは固体塩基性を示す代表的な酸化物 である。固体塩基性の評価には、CO₂ やニトロベンゼ ンなどのプローブ分子を試料表面に吸着させ、その吸着 状態を赤外吸収分光法(FT-IR)により測定する手法が よく利用される⁸⁻¹⁰⁾。一般的には CO₂ をプローブ分子 に用いられることが多いが、その強い酸性のために試料 表面に強く吸着し、表面状態の僅かな違いを評価するこ とは難しい。そこで本研究では、酸化マグネシウム表面 における $Mg^{2+} - O^{2-}$ ペアサイトの状態によって様々な クラスターアニオンを形成することが知られている CO をプローブ分子として^{11),12)}、以下の手順で *in situ* FT-IR スペクトルを測定した。

加圧成型したサンプルディスク(直径 20mm、25 mg·cm⁻²)を、CaF₂窓板を装着した縦型の IR セル内¹³⁾ に設置し、前処理として 600℃で酸化処理および真空排 気処理を行った後、室温で CO ガス(1.33 kPa)を導入 し、物理吸着種を排気した後に IR スペクトル(日本分

光(株) FT/IR-4200) を測定した。

Fig. 4には前処理後の試料について測定した IR スペ クトルを示す。なお、UD-650 は熱処理を行っていない ことから、600℃での前処理により初期とは異なる表面 状態になっていることに注意が必要である。図から明ら かなように、UD-650 においては 1500 ~ 1000 cm⁻¹の 領域に炭酸塩種 (Carbonate (CO₃²⁻) / Carboxylate (CO₂⁻))¹⁴⁾ に帰属されるピークが観察されたが、500A ではピーク強度が弱く、600℃での前処理により容易に 清浄化できると考えられる。図には焼成温度が異なる UGK-xのIRスペクトルも示す。いずれの焼成温度に おいても炭酸塩種の存在が確認できたが、焼成温度とと もに 1250 ~ 1100 cm⁻¹ のピーク強度が強くなる傾向が 見られた。酸化マグネシウムはこの領域に IR 吸収ピー クを示さないことから、高温での焼成により酸化マグネ シウムの一部が安定な炭酸塩化合物を形成したものと推 察される。また、Fig. 4から明らかなように、いずれの 試料においても 3800 ~ 3300 cm⁻¹の領域に表面 OH 基 に帰属されるピークが観察された。UD-650、UGK-550、UGK-700、UGK-800 で は 3600 ~ 3300 cm⁻¹ に ブロードなピークと 3740 cm⁻¹ 付近にシャープなピーク が観察された。低波数側のピークは表面 O²⁻ との水素結 合により生成した OH 基 (H-bonded OH group)、高波 数側のピークは Mg²⁺ に吸着した OH 基(isolated OH group) に帰属されている¹⁵⁾。550~800℃で焼成した 酸化マグネシウム表面には塩基点の存在が示唆される。 一方、500A と 900℃以上で焼成した UGK-900、UGK-1000 では" isolated OH group" に帰属されるピークの みが観察され、塩基性が弱いと推察される。

液体窒素温度で酸化マグネシウム表面に CO を接触させると、一つの活性点に複数個の CO が吸着し、 $C_{2n}O^{2-}_{(2n+1)}$ で表されるクラスターアニオンが生成する^{11),12)}。 Fig. 5には室温で吸着させた CO 種の IR スペクトルを示す。 500A では明確な IR ピークが観察されず、CO 分子に対して不活性な表面状態であると考えられる。UD-650、 UGK-550、UGK-700、UGK-800 への CO の吸着により 1670 cm⁻¹ と 1310 cm⁻¹ 近傍に IR 吸収ピークが検出され、

Fig. 4 FT-IR spectra of magnesium oxides pretreated with O_2 at 600°C .

比較的類似した IR スペクトルが得られた。1670 cm⁻¹ 付 近のピークは表面 OH 基と相互作用した "hydrogen carbonate" に帰属される¹⁶。一方、1310 cm⁻¹ 付近のピー クは配位不飽和な $Mg^{2+} - O^{2-}$ ペアサイトに吸着したダイ マー種((CO)₂²⁻) に帰属されるようであり¹¹⁾、これらの 酸化マグネシウム表面には結晶が不完全なサイトが多く存 在していると考えられる。一方、高温で焼成した UGK-900、UGK-1000 では明確なピークが検出されず、安定(不 活性) な表面状態となっているようである。

5.2. 吸着 CO2 種の昇温脱離挙動

固体塩基の量と強度は吸着 CO₂種の昇温脱離 (Temperature-programmed desorption, TPD) プロファ イルを測定することにより評価できる。ピーク面積が塩 基量、ピーク温度が塩基強度の指標となる。本研究でも 固定床流通式装置(ヘンミ計算尺(株) BP-1)を用い、 以下の手順により CO₂ TPD 測定を行った。秤量した 100mgの試料を石英製反応管に充填し、前処理として 100% O₂ 流通下、600℃で1時間酸化処理、Ar ガスで のパージ後、50℃まで冷却し、0.5% CO₂/He ガス流通 下で1時間、CO₂ 吸着を行った。物理吸着した CO₂ 種 を Ar パージにより脱離させた後、Ar 流通下、600℃ま で 10℃・min⁻¹で昇温することにより脱離する CO₂ 種を 四重極質量分析計(キャノンアネルバ(株) M-201QA-TDM)により計測した。

Fig. 6 に各試料について測定した CO₂-TPD プロファ イルを示す。UD-650 では顕著な CO₂ 脱離ピークが観 察されたが、UGK-550 と類似したプロファイルが得ら れたころから、600℃での酸化前処理による酸化マグネ シウムの生成によるものと考えられる。焼成温度が異な る UGK-x においては、焼成温度とともに全 CO₂ 脱離 量が減少し、高温脱離ピークが消失したことから、高温

Fig.5 FT-IR difference spectra of adsorbed CO species remaining on magnesium oxides after the evacuation at room temperature.

焼成により塩基点が大きく減少することが明らかとなっ た。Table 2 には試料重量および比表面積で規格化した CO, 脱離量をまとめる。上述のように、CO, 脱離量は 焼成温度とともに減少したが、表面積当たりの CO, 脱 離量に顕著な違いは見られない。これは高温焼成によっ て塩基点の質に大きな変化はなく、粒子の焼結により数 が減少したことを示唆する結果である。一方、600℃で の酸化前処理後の IR スペクトルから強い塩基点が少な いと示唆された 500A においても (Fig. 4)、100~ 400℃で顕著な CO₂ 脱離が観察された(Fig. 6)。UGK-700と同程度の CO, 脱離量が得られており、塩基点の 数は決して少なくない。特に興味深い点として、比表面 積当たりの CO2 脱離量が 500A でかなり高い。これは 気相酸化法により結晶核を成長させて単結晶の一次粒子 が形成されることで、Mg(OH)2を熱分解して得られた 酸化マグネシウムとは粒子の表面構造が異なることに由 来すると推察される。

Fig.6 CO₂-TPD profiles of magnesium oxides.

Samula	Amount of CO ₂ desorption normalized by		
Sample	sample weight / µmol-CO ₂ ·g ⁻¹	surface area / μ mol-CO ₂ ·m ⁻²	
UD-650	6.02	2.15 × 10 ⁻²	
UGK-50	5.99	3.07×10^{-2}	
UGK-700	3.01	3.26 × 10 ⁻²	
UGK-800	1.16	2.89 × 10 ⁻²	
UGK-900	0.41	2.56×10^{-2}	
UGK-1000	0.40	5.69 × 10 ⁻²	
500A	3.07	9.34 × 10 ⁻²	

Table.2 Summary of CO₂-TPD measurements.

6. 大気に曝した酸化マグネシウムの表面状態

6.1. 吸着種の昇温脱離挙動

酸化マグネシウムを触媒として評価・利用する場合は、 大気中での保管により表面を被覆する水分や炭酸塩種を 除去するための熱処理が必要になる。一方、植物病害防 除剤としては熱処理を施すことなく水に懸濁させて利用 される。したがって、大気に曝された表面状態を観察す ることが、植物病害防除剤としての機能を理解するため には重要である。そこで、まずは表面に多量に吸着して いると予想される水分と二酸化炭素の昇温脱離挙動を測 定した。評価には CO_2 -TPD と同様の装置を用い、前処 理を行っていない試料について、Ar 流通下、800℃ま で 10℃・min⁻¹で昇温することにより脱離する H₂O 種、 CO_2 種を四重極質量分析計(キャノンアネルバ(株) M-201QA-TDM)により計測した。

H₂O種の脱離プロファイルを Fig. 7(A) に示す。いず れの試料においても100~200℃の温度領域に酸化マグ ネシウム表面に弱く吸着(物理吸着)した H₂O 種の脱 離ピークが観察された。UD-650 では 300℃以上の温度 域で顕著なH₂O種の脱離が認められ、その脱離量は温 度とともに増加した。UD-650の結晶相は Mg(OH)2で あることから (Fig. 1)、昇温にともなう $Mg(OH)_2$ の分 解により生成したH₂O種に帰属することができる。 UGK-550 も一部 Mg(OH), が残存していることから、 UD-650と同様の300℃以上での顕著なH₂O種の脱離 ピークが観察された。一方、結晶相が MgO である 500A、UGK-700、UGK-800、UGK-900 で は 200 \sim 400℃の温度域にシャープな H₂O 種の脱離ピークが観察 された。これは酸化マグネシウム表面に化学吸着してい るH₂O種(OH基)の脱離によるもので、その脱離量は UD-650の焼成温度とともに徐々に低下した。これは比 表面積の減少によるものと考えられる。

Fig. 7(B) には同時に測定した CO₂種の脱離プロファ イルを示す。UD-650 では 150、420、650℃に 3 つの脱 離ピークが、また 500A では 150℃と 350℃に 2 つの脱 離ピークが観察された。低温ピークはほぼ同じ温度で観 察されたことから、試料表面に弱く吸着した CO₂種の 脱離によるものと考えられる。一方、高温側のピークは 塩基点に強く吸着した CO₂種によるものに帰属される が、脱離温度が UD-650 と 500A では異なる。上述のよ うに UD-650 の結晶相は Mg(OH)₂ であることから、 CO₂種は表面水酸基と相互作用し、"hydrogencarbonate" 種として存在していると考えられ、500A と比較して高 い温度域で脱離したものと推察される。焼成温度の異な る UGK-x も UD-650 と類似した CO₂ 脱離プロファイル

Fig.7 Desorption profiles of (A) H₂O and (B) CO₂ from magnesium oxides without pretreatment.

を示したが、250~400℃と550~700℃に現れたピー クは焼成温度とともに減少する傾向が見られた。これは 比表面積の低下にともなう強い塩基点の減少によるもの と考えられる。一方、200℃以下の低温域での CO, 脱離 ピークの強度が焼成温度の傾向とは一致しないという興 味深い結果が得られた。酸化マグネシウム表面に強度の 異なる塩基点が一様に分布していると考えると、比表面 積の低下にともない CO2 脱離ピークが徐々に低下する はずである。しかし、Fig. 7(B) から明らかなように、 UGK-550 で観察された 100 ~ 200℃の温度域の CO₂ 脱 離ピークは UGK-700、UGK-800 でほぼ消失し、900、 1000℃で焼成した UGK-900、UGK-1000 で再び現れた。 これらの結果は UD-650 を 700 ~ 800℃で焼成すること により、CO2が低温で容易に脱離できる弱い塩基点が少 なくなる、もしくは常に露出している状態になることを 示唆しており、植物病害防除剤としての機能発現との関 連性が推測される。

6.2. XPS による表面酸素種の評価

酸化マグネシウムの重要な特性は固体塩基性である が、配位不飽和度の高い孤立化した酸素イオンほど塩基 性が強く現れる¹⁷⁾。表面酸素種を解析する手法としては ESR や XPS、O₂ 吸着種の IR など様々な手法があるが、 本研究では XPS により表面酸素種の解析を行った。Fig. 8 には先進セラミックス研究センターで所有管理してい る Surface Science Instruments 社の M-Probe(単色化 Al Ka、10 kV、20mA)を用いて測定した UGK-800 の XPS スペクトルを示す。Mg 2s、Mg 2p、O 1s に帰属さ れるピークに加え、不純物として含まれる C 1s のピー クが検出された。全ての試料について同様の XPS スペ クトルが得られた。

表面酸素種の状態を比較するため、Fig. 9 に O 1s 領 域の XPS スペクトルを示す。なお結合エネルギーは C 1s (284.6 eV) のピークで補正した。文献によれば、 酸化マグネシウム表面には表面 OH 基 (532.7 eV) と 格子酸素 (530.5 eV) の二種類の酸素種の存在が報告さ れている¹⁸⁻²⁰⁾。Fig. 9 から明らかなように UD-650 と 550 ~ 900℃で焼成した UGK-*x* において 533 eV 付近 と 530 eV 付近に二種類のピークが観察された。これは IR スペクトルで観察された二種類の OH 基の存在とも よく一致しており (Fig. 4)、XPS で検出された表面 OH 基 (*ca.* 533 eV) と 格子 酸素 (*ca.* 530 eV) は " isolated OH group (3740 cm⁻¹)"、" H-bonded OH group (3600 ~ 3300 cm⁻¹)" にそれぞれ相当する。図か ら明らかなように、表面 OH 基 (*ca.* 533 eV) に帰属さ

Fig.9 O 1s XPS spectra of magnesium oxides without pretreatment.

羽田政明·加藤聖崇·境 昭二

Binding energy of O 1s / eV Sample O_b/O_s peak area ratio surface OH group (O_s) lattice oxygen (O_b) 3.25 UD-650 530.7 532.4 UGK-550 534.1 530.5 1.01 UGK-700 533.7 530.3 0.80 UGK-800 532.8 530.0 1.00 UGK-900 532.0 530.2 4.58 UGK-1000 530.5 n.d. 00 500A 531.5 n.d. 00

Table.3 Summary of XPS measurements.

れるピークは焼成温度とともに強度が減少し、1000℃ で完全に消失した。IR スペクトルでは、焼成温度とと もに"H-bonded OH group"の減少が見られたが、これ は OH 基の脱離にともなう格子酸素が露出したことを 示唆するものであり、XPSの結果とよく一致する。また" H-bonded OH group"によるIR ピークが観察されなかっ た 500A においても、格子酸素に帰属されるピークのみ が XPS スペクトルにおいて検出された。

Table 3 には表面 OH 基 (O_s) と格子酸素 (O_b) の結 合エネルギーとピーク面積比 (O_b/O_s) をまとめる。格 子酸素の結合エネルギーは焼成温度によって顕著な違い は見られないが、表面 OH 基に帰属されるピークは低 エネルギー側にシフトした。これは表面 OH 基に含ま れる O 原子の負電荷 (negative charge) が高くなった ことを示唆する現象であり、炭酸塩種の脱離により露出 する塩基点からの電子的寄与によるものと推察される。

O_b/O_sピーク面積比は表面塩基性と関連することが知 られている¹⁹⁾。CO₂-TPDよりUGK-xの表面塩基性は 焼成温度とともに徐々に低下することが明らかとなった (Table 2)。しかし、Table 3 にまとめたように、UGK-x の O_b/O_s ピーク面積比は 550 ~ 800℃ の焼成ではほぼ 同じ値が得られ、900℃以上で焼成することにより高く なった。これは CO₂-TPD によって評価された表面塩基 性とは一致しない。焼成温度により表面に残存する OH 基や炭酸塩種の影響が異なることが容易に考えられ、表 面塩基性とO_b/O_sピーク面積比との単純な関連性を説明 することの方が難しい。一方、Table 1 と Table 3 の比 較から、O_b/O_cピーク面積比は比表面積と相関する傾向 が見られた。つまり比表面積が 50m²g⁻¹ 以上では O_b/O_s ピーク面積比はほぼ同じ値となり、50m²g⁻¹以下では比 表面積が低下するとともに O_b/O_c ピーク面積比が高く なった。比表面積が小さいほど表面エネルギーが安定化 し、吸着サイトの減少にともない安定な格子酸素の露出 割合が高くなったものと推察される。

7. おわりに

本稿では、セラミックス材料として広く利用されてい

る酸化マグネシウムの物理化学的特性を評価するための 手法と市販されている酸化マグネシウムの評価結果を報 告した。従来の酸化マグネシウムの利用においては形状 や機械的強度などマクロな特性を知ることが必要であっ たが、触媒材料や植物病害防除剤としての利用において はナノレベルでの表面解析が作用機構解明や機能解明に おいて極めて重要である。表面解析の重要性は酸化マグ ネシウムに限定されるものではなく、本稿で紹介した内 容が様々な機能性材料の研究に役立つことを期待してい る。

謝辞

本研究は、宇部マテリアルズ株式会社との共同研究と して実施しました。ここに記して謝意を表します。

REFERENCES

- 田部浩三、清山哲郎、笛木和雄編、「金属酸化物と複合酸 化物」(講談社サイエンティフィク)、pp. 33-41 (1978).
- 2) 山田清、CREATIVE、[9] (2008) 31-36.
- 3) H. Hattori, J. Jpn. Petrol. Inst., 47 [2] (2004) 67-81.
- 4) 松橋博美、辻秀人、*触媒、*46[1] (2004) 36-42.
- 5) 服部 英、「季刊 化学総説 高次機能触媒の設計」(学会出版センター)、pp. 46-52 (1999).
- 6) 触媒学会編、「触媒便覧」(講談社サイエンティフィク)、 pp. 334-336 (2008).
- 7) 字部マテリアルズ(株)、山口大学:公開特許公報 特開 2013-256488
- 8) 山崎弘史、野村淳子、*触媒、53*[6](2011)371-376.
- J.A. Lercher, C. Gründling, G. Eder-Mirth, *Catal. Today*, 27 (1996) 353-376.
- M. Tamura, K. Shimizu, A. Satsuma, *Appl. Catal. A*, **433-434** (2012) 135-145.
- A. Zecchina, S. Coluccia, G. Spoto, D. Scrano, L. Marchese, J. Chem. Soc., Farady Trans., 86 [4] (1990) 703-709.
- 12) T. Tashiro, J. Ito, R.-B. Sim, K. Miyazawa, E. Hamada, K.

Toi, H. Kobayashi, T. Ito, J. Phys. Chem., 99 (1995) 6115-

6122.

- 羽田政明、「CERAMIC DATA BOOK 2016/17」(工業製 品技術協会)、pp. 94-98 (2016).
- 14) A.A. Davydov, "Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides" (Wiley, Chichester), pp. 37-53 (1990).
- 15) C. Chizallet, G. Costentin, M. Che, F. Delbecq, P. Sautet, J. Am. Chem. Soc., **129** (2007) 6442-6452.
- 16) J.C. Lavalley, Catal. Today, **27** (1996) 377-401.
- 17) G. Pacchioni, J.M. Ricart, F. Illas, J. Am. Chem. Soc., 116 (1994) 10152-10158.
- 18) S. Ardizzone, C.L. Bianchi, M. Fadoni, B. Vercelli, *Appl. Surf. Sci.*, **119** (1997) 253-259.
- S. Ardizzone, C.L. Bianchi, B. Vercelli, *Appl. Surf. Sci.*, 126 (1998) 169-175.
- Y.V. Larichev, B.L. Moroz, V.I. Zaikovskii, S.M. Yunusov, E.S. Kalyuzhnaya, V.B. Shur, V.I Bukhtiyarov, J. Phys. Chem., 111 (2007) 9427-9436.