2 源クラスターからの複合・コアシェルクラスター集合体作製

加藤亮二

名古屋工業大学セラミックス基盤工学研究センター 〒 507-0071 岐阜県多治見市旭ヶ丘 10-6-29

Composite and Core-Shell Cluster assemblies Prepared with Two Cluster Sources

Ryoji Katoh

Ceramics Research Laboratory, Nagoya Institute of Technology Asahigaoka 10-6-29, Tajimi, Gifu 507-0071 JAPAN

MSYNOPSIS

A plasma-gas condensation cluster deposition system with two sources has been applied for preparing Co/Si clusters assemblies. When a separation plate is inserted between two glow-discharge-rooms, a mixture of Co and Si clusters is obtained: small Co clusters are distributed at random, while the Si clusters are aggregated to form large secondary particles. Without a separation plate, on the other hand, core-shell clusters are obtained: a Co core is covered by small Si crystallites. The magnetization measurement at 5 K shows that the magnetic coercive force of Co/Si cluster assemblies is much smaller than that of Co cluster assemblies. Since the Si shell prevents Co cluster surfaces from their oxidation, such core-shell clusters will be used as building blocks for novel nano-structure-controlled materials.

KEYWORDS

plasma-gas-condensation, core-shell cluster, transmission electron microscopy, magnetic property

1 緒 言

近年,ナノサイズ微粒子の構造,組織,集合状態を制 御することにより,材料の高性能・複合機能化,集積度 向上が図られている¹⁾.このような微粒子の研究は,上 田等の実験と久保等の理論が先駆けとなり²⁾,広範かつ 系統的な応用研究を経て³⁾,プリント配線や高機能性 ペースト等への実用化が急速に進んでいる⁴⁾.

我々のグループでは、より小さいクラスターに着目 し⁵⁾、生成効率、汎用性の高いプラズマガス中凝縮クラ スター堆積装置の開発と^{6,7)}、クラスターサイズの単分散 化を行ってきた^{7,8)}.透過電子顕微鏡と質量分析計を用 いたクラスター形成過程の観測に基づき、単分散サイズ のクラスター合成には、気化原子からクラスター核が生 成する空間、時間を限定し、その後は、気化原子をクラ スター核に凝集させ、真空度の高い空間に引き出してク ラスター同士の衝突を抑制しながら基板上に堆積させる ことが重要であることを明らかにした⁸⁻¹⁰⁾.

よく知られているように、クラスターは通常の蒸着の 際の気化原子と同様に、基板表面を拡散していく^{5,11}. クラスターの基板上での集合過程については,幾何学的, 電気的,磁気的な連結・ネットワークがマクロなクラス ター堆積領域全体に行き渡るパーコレーション現象とし て把握することができ,その閾値が識別される^{12,13)}.ま た,基板上でクラスター同士のランダムな付着が進行し てできるクラスター集合体は,多孔質体である^{5,14)}.と ころが,プラズマガス中凝縮法で生成したクラスターは 数十%がイオン化されているので⁶⁾,高電圧のバイアス 基板上に入射させると強制着陸させることができる¹⁵⁾. このようなクラスター集合体は,高密度な膜となり,強 度や磁気的性質も向上する¹⁶⁾.基板の温度を高めるこ とによっても,クラスターの表面拡散が促進されるが, 同時にクラスター同士の合体・融合が生じ易くなるため, クラスターの初期サイズを維持できない¹⁷⁾.

次に、クラスター集合直前にその表面を酸化させるこ とが、クラスターの安定化に有効であることを提示した. このような酸化膜で覆われたコアシェルクラスターは酸 化の進行が抑制されるばかりでなく、様々な機能が付与 される.例えば、Coのクラスター表面を CoO で被覆し たコアシェルクラスター集合体は、高温における CoO シェルのネットワークを通しての半導体的な電気伝導か ら低温における金属 Co コア間のトンネル型のクーロン ブロッケード電気伝導へと遷移し、低温で大きな磁気抵 抗効果を示す¹⁸⁾.また、強磁性 Co コアと反強磁性 CoO シェルの間に強い磁気交換相互作用が働き、一方向異方 性ならびにランダム磁気異方性が誘起されるとともに¹⁹⁾、 磁化の緩和現象において、高温の熱活性型から低温のト ンネル型緩和へと遷移する²⁰⁾. クラスターのコアサイ ズやシェルの厚さが均一であるので、これら2種類の遷 移が極めて明瞭に観測される.更に、金属材料学の伝統 に従い、合金クラスターを作製すると、機能を向上させ ることが期待される. 例えば、CoやFeクラスターは 10nm 以下になると、単磁区粒子となるが、室温でも熱 揺らぎが大きく,超常磁性を示す¹³⁾.しかし,CoPtや FePt などの規則合金クラスターにおいては、磁気異方性 が顕著となり 5nm 程度でも室温での強磁性が安定化さ れる 21).

この考え方を更に発展させ,異種クラスターを同時に 発生させ,その堆積過程を制御することにより,更なる 機能の向上が期待される.本稿では,この目的のために 試作した2源クラスター発生・堆積装置,それにより作 製した Coと Si クラスターの堆積例とその磁気的性質に ついて概観する.

2 2 源クラスター生成・堆積装置

Fig.1 は、2 源プラズマ・ガス中凝縮クラスター発生・ 堆積装置の概略図である²²⁾. 2つの原料を気化蒸発させ るためのスパッタリング室 1A および 1B,成長ダクト 2, クラスター堆積室 3 で構成される.スパッタリング室 1A,1Bとクラスタ堆積室は成長ダクト 2のノズルを通 して空間的に繋がっている.スパッタリング室1Aと1B の間には取り外し可能な仕切り板が挿入可能であり、 夫々の室で発生した蒸気や形成されたクラスターがス パッタリング室で混合するのを防ぐことができる.Ar ガスは、原材料の気化、気化した原料原子の冷却(Ar 原

Fig.1 A double source plasma-gas-condensation system²²).

子と衝突して運動エネルギーを失う)、原料原子の凝縮・ 核生成・成長(気化原子同士が衝突して2原子分子ある いはそれより大きい分子やクラスターへと成長する際に 発生する凝集エネルギーの脱離)に寄与するばかりでな く、スパッタリング領域から金属蒸気を引き出し、Ar気 流とともに生成したクラスターを成長ダクトを通して堆 積室へ搬送する役目を担っている. クラスター堆積量は 基板の直前の位置に挿入可能な水晶振動子膜厚計により 見積もることができる. 放電用 Ar の分圧 P_{Ar}は 300-600Pa程度と、通常のスパッタリング成膜の時の *P*_{Ar}=0.1-1Paと比べて2桁以上高いので.アーク放電を 抑制することが大きな課題となる. Fig.1 の装置におい て、スパッタリング室1Aは先に開発された装置⁶⁻⁸⁾と同 様 DC モードでプラズマを発生させており、金属原料の 気化・蒸発を行う.一方.スパッタリング室1Bでは, RF モードでプラズマを発生することができ、絶縁体や 半導体原料の気化、クラスター生成が可能であることが 特徴である.但し現時点では、上記のような高い P_{Ar}の 下で異常放電を発生させることなく高い電力を印加して RF プラズマを維持することが困難ある.したがって、 Si クラスター発生用 RF 投入電力を 200W 以下に固定し、 Co クラスター発生用 DC 投入電力を 100 ~ 400W に変 化させて両クラスターの堆積比を調節した.

先ず、スパッタリング室 1A に DC 電力あるいはス パッタリング室 1B に RF 電力を印加して, Co あるいは Si のいずれかをスパッタ蒸発、クラスターを発生させ、 堆積室3の基板ホルダーにセットしたカーボングリッド 上に堆積させ、それらの試料を透過電子顕微鏡により観 測した.紙面の制約でここでは図示しないが、Coクラ スター, Si クラスター双方ともにサイズ単分散性が悪い ²²⁾. この理由は、次のように考えられる. 先に開発され た装置では⁶⁻¹⁰⁾, クラスター成長室から排出されたクラ スターは, 差動排気により段階的に高真空室へと搬送さ れて基板上に堆積させていた.一方この装置では,成長 ダクトから排出されたクラスターが Ar ガスとともに基 板上に衝突するので、クラスターの基板上での移動、基 板に軟着陸したクラスターの Ar ガスによる飛散が生じ る可能性が高い. そのことを反映して、クラスター堆積 状態はビームに対応した点状でなく、堆積毎に不均一で ある.また、クラスターサイズの分布も広く、基板上で のクラスターの合体・凝集を示唆する対数正規分布を示 す.

3 Co と Si クラスターの複合堆積

3.1 Co と Si クラスターの混合堆積と磁性²³⁾

スパッタリング室 1A と 1B の間に仕切り板を挿入して、 *P*_{Ar}=300Pa とし、1A 室の DC 電力 250W、1B 室の RF 電力 150W で Co および Si クラスターを発生させ、

Fig.2 Bright field TEM images of Co and Si composite clusters prepared by dc and rf glow discharge modes with inserting the separate plate between two chambers, 1A and $1B^{23}$. (a) the TEM image for a higher cluster density region and (b) that for a lower cluster density region, respectively. The average chemical composition of this cluster assembly is 94 at. % Co.

基板ホルダー上のマイクログリッドに堆積させた. Fig.2 はその試料の透過電子顕微鏡 (TEM) 像である. 極端にクラスターが凝集した領域と,小さいクラスターが ランダムに堆積した領域が観測される. TEM に取り付けられているエネルギー分散型 X線(EDX)分析によれば,広い領域での平均化学組成は94at%Coであるのに対して,クラスターが凝集した領域 A の化学組成は 4at%Co,小さいクラスターが堆積した領域 B の化学組成は 4at%Co,小さいクラスターの凝集した領域 B の化学組 成は91at%Coである. Coクラスターの凝集はそれ程顕 著でないが, Co クラスターの存在により Si クラスター の凝集が一層促進されたと推測される.

Fig.3 は同様の条件でより多くのクラスターを堆積さ

Fig.3 A selected area electron diffraction pattern of of Co/Si composite clusters prepared by dc and rf glow discharge modes with inserting the separate plate between two chambers, 1A and 1B²³. The average chemical composition of the cluster assemblies is 94 at. % Co by EDX analyses.

せた試料(平均化学組成 72at%Co)の電子回折図形を示 す.fcc回折リングとハローリングが重畳しており、前 者は Co クラスター,後者は Si クラスターに対応してい る.また、僅かながら NaCl タイプの回折リングが検出 され、CoO相が存在することを示唆している.スパッタ リング室 1Aと 1Bの間に仕切り板を挿入し,高い PArの 条件下で作製しているので、クラスター核生成はスパッ タリング室で生じる.そして,成長ダクトにおいて,成 長しつつある Co と Si クラスターが衝突する. Co-Si 系 平衡状態図において²⁴⁾, Co中には 1000K で Si が 12at %固溶し, Si 中には 1700K まで Co が殆ど固溶しない. したがって、高いPAr環境下でほぼ室温に冷却された Co と Si のクラスター同士は化合物相形成に至らないと推 測される. 但し, EDX 分析時のコンタミネーションの ため、Co クラスターと Si のクラスターが重なって存在 するのか、或いは両者の界面で合金化が生じているかを 判別することができなかった.

Fig.4 は、同様の条件でより多くのクラスターを堆積 させた試料(平均化学組成 87at%Co)の室温および 5K における磁化曲線を示す.磁化は比較的飽和しやすく、 保磁力 H_c は 300K で 1.6kA/m, 5K で 32kA/ である. Si クラスターが Co クラスターと混在しているが、Co の化 学組成が高く、また飛行中にも Co クラスター同士が衝 突するので、Co クラスターのネットワークができて多 磁区構造をとり、磁壁移動が磁化過程を支配していると 予想される.電子回折において反強磁性 CoO の存在が 僅かに認められたので、それによる交換磁気異方性や保

Fig.4 Magnetization curves at (a) 300 and (b) 5 K for Co/Si composite cluster assemblies prepared with inserting the separate plate between two chambers, 1A and $1B^{23}$. Its average chemical composition is 87 at. % Co.

磁力の増強が観測されるはずであるが^{14),19)},5K におい ても $H_{\rm c}$ が小さくSiクラスターと共存することにより Coクラスターの酸化が抑制されたと推測される.

3.2 Co/Si コアシェルクラスター集合体と磁性

スパッタリング室 1A と 1B の間に仕切り板を挿入せ ず, *P*_{Ar}=300Pa とし, 1A 室の DC 電力 250W,1B 室の RF 電力 150W として, Co および Si クラスターを発生 させ, 基板ホルダー上のマイクログリッドに堆積させた. Fig.5 はその試料(平均化学組成 22at%Co)の TEM 像 である.暗いコントラストのコア領域を明るいコントラ ストのシェル領域が取り囲む組織が観測される.マイク ロビーム EDX 分析による局所的化学組成は,コア領域 A で 45at%Co,シェル領域 B で 18at%Co となる.

Fig.5 Bright field TEM image and energy-dispersive X-ray analyses of Co/Si composite clusters prepared by dc and rf glow discharge modes without inserting the separate plate between two chambers, 1A and $1B^{23}$. The region marked by A is about 45 at. % Co and the one marked by B about 18 at. % Co, whereas the average chemical composition of these cluster assemblies is about 22 at. % Co.

Fig.6 は同様の条件でより多くのクラスターを堆積させた試料(平均化学組成 22at%Co)の電子回折図形を示す.Fig3 と類似して,線幅の広いfcc 回折リングとハローリングが重畳しており,前者は Coコア領域,後者は Si シェル領域に対応しているが,CoO相に対応する回折リングは検出されない.スパッタリング室1Aと1Bの間に仕切り板が無く,Coおよび Si クラスターの核生成は核生成の段階から衝突をはじめ,成長ダクトに搬送され成長していく.Co-Si 合金系には、生成エネルギーの大きい金属間化合物が存在するので,小さな Coと Siのクラスターが衝突すると、室温でも瞬間的な合金化が生じると予想された²⁵⁾.しかし実際には,Co/Si コア

Fig.6 A selected area electron diffraction pattern of Co/Si composite clusters deposited on a carbon micro-grid by dc and rf glow discharge modes without inserting the separate plate between two chambers, 1A and 1B²³. The average chemical composition of the cluster assemblies is 37 at. % Co by EDX analyses.

シェルクラスターが形成された. Co と Si の表面エネル ギーを比較すると Si の方が Co に比べて 1 桁小さく²⁶⁾, Co と Si のクラスター核が衝突したとき, Si クラスター が Co クラスターの表面に付着して安定化が図られ, Co-Si 金属間化合物が形成されなかったと推測される. 但 し,先の Co と Si クラスターが混在する場合と同様, EDX 分析により局所的な合金化が生じているか否かに

Fig.7 Magnetization curves at (a) 300 and (b) 5 K for Co/Si composite cluster assemblies prepared without inserting the separate plate between two chambers, 1A and 1B. Its average chemical composition is 32 at. % Co^{23} .

ついては判別できなかった.

Fig.7 は、同様の条件でより多くのクラスターを堆積 させた試料(平均化学組成 32at%Co)の室温および 5K における磁化曲線を示す.いずれの温度においても磁化 は飽和しており、H_cは 300K で 2.4kA/m、5K で 40kA/ である.しかし、Fig.4と比較すると、飽和し難く、H_cも 少し大きい.Coクラスターが Siクラスターにより取り 囲まれたコアシェル構造になっており、反強磁性 CoO の影響は見られない^{14),19)}.そのため、Coクラスター間 の磁気的相互作用が弱められ、Coクラスターが単磁区 粒子となり 300K で超常磁性を示し、5K において単磁区 粒子の回転による磁気異方性が強調されたと推測される.

4 要 約

クラスター集合体の機能性を向上させるため2源プラ ズマ・ガス凝縮クラスター生成・堆積装置を試作した.金 属クラスターと半導体・絶縁体クラスターの複合化を目 指し、スパッタリング用プラズマの一つは DC モード、 もう一つは RF モードで作動させることができ、仕切り 板により2つのプラズマで発生した気化原子や生成クラ スターの衝突時期(場所)を変化させることができる.こ の装置を用いて、CoクラスターとSiクラスターを発生・ 堆積させた試料について,透過電子顕微鏡観察,電子回 折ならびに SQUID 磁力計による磁化測定を行った.仕 切り板を挿入して作製した試料は、Co クラスターと Si クラスターの混在状態となる.一方,仕切り板を挿入せ ずに作製した試料はCoクラスターがSiクラスターで取 り囲まれたコアシェル構造を示す.いずれの試料も 300Kで軟磁性を示す.5Kにおいても、Coクラスター 単独の集合体に比べて保磁力は小さく、反強磁性 CoO の形成が抑制されている.特にコアシェルクラスターの 方が表面酸化の抑制効果がより顕著であり、クラスター を部品として集合化させるマテリアルプロセスに応用で きると期待される.

参考文献

- A.S.Edelstein and R.C.Cammarata ed.: "Nanomaterials Synthesis, Properties and Applications", Institute of Physics (1996).
- R.Uyeda ed.: "Ultrafine Particles", AGNE Technical Center (1984) (in Japanese).
- The Chemical Society of Japan ed. "Ultrafine Particles -Science and Applications", Japan Scientific Societies Press (1985) (in Japanese).
- H.Murakami, M.Hirakawa, Y.Ohtsuka, H.Yamakawa, N.Imazeki, S.Hayashi, T.Suzuki, M.Oda and C.Hayashi: "Spin-on Films for Ultra-Large Scale Integrated Metallization", J.Vac.Sci.Tech., B17(1999) 2321-2324.

- P.Melinon, V.Paillard, V.Dupuis, A.Perez, P.Jensen, A.Hoareau, J.P.Perez, J.Tuaillon, M. Broyer, J.L.Vialle, M.Pellarin, B.Bauguenard and J.Lerme: "From Free Clusters to Cluster-Assembled Materials", Int.J.Mod.Phys., B9 (1995) 339-397.
- H.Haberland, M.Karrais, M.Mall and Y.Thurner: "Thin Films from Energetic Cluster Impact: A Feasibility Study", J.Vac.Sci.Tech., A10 (1992) 3266-3271.
- S.Yamamuro, K.Sumiyama, M.Sakurai and K.Suzuki: "Cr Cluster Deposition by Plasma-Gas-Condensation Method", Supramolecular Sci., 5 (1998) 239-245.
- S.Yamamuro, K.Sumiyama and K.Suzuki: "Monodispersed Cr Cluster Formation by Plasma-Gas-Condensation", J.Appl.Phys., 85 (1999) 483-489
- T.Hihara and K.Sumiyama: "Formation and Size Control of a Ni Ccluster by Plasma Gas Condensation", J.Appl.Phys., 84 (1998) 5270-5276.
- T.Hihara and K.Sumiyama: "Time-of-Flight High-Mass Spectrometer Observation of Large Size Nb Clusters toward Assembling of Size Controlled Clusters", J.Vac.Sci.Tech., B17 (1999) 1923-1829.
- P.Jensen: "Growth of Nanostructures by Cluster Deposition: Experiments and Simple Models", Rev.Mod.Phys., 71(1999) 1695-1735.
- S.Yamamuro, K.Sumiyama, T.Hihara and K.Suzuki: "Geometrical and Eelectrical Percolation in Nanometer-Sized Co-Cluster Assemblies", J.Phys.Cond.Mat., 11 (1999) 3247-3257.
- S.Yamamuro, K.Sumiyama, T.J.Konno and K.Suzuki: "Structural and Magnetic Evolution in Self-Assembling Process of Nanometer-Sized Co Clusters", Mat.Trans.JIM, 40 (1999) 1450-1455.
- S.Yamamuro, K.Sumiyama, T.Kamiyama and K.Suzuki: "Morphological and Magnetic Characteristics of Monodispersed Co-Cluster Assemblies, J.Appl. Phys., 86 (1999) 5726-5732.
- 15) M.Oda: "Formation of Composite and Isolated Ultrafine Particles by Gas Evaporation Method" C.Hayashi ed. "Ultrafine Particles - Creation Science and Technology", Mita Publishing Society (1988) p.115-132 (in Japanese).
- D.L.Peng, H.Yamada, T.Hihara, T.Uchida and K.Sumiyama:
 "Dense Fe Films Prepared by Energetic Cluster Deposition", submitted to Appl.Phys.Lett. (2004).
- D.L.Peng, T.J.Konno, K.Wakoh, T.Hihara and K.Sumiyama:
 "Co Cluster Coalescence Behavior Observed by Electrical Conduction and Transmission Electron Microscoppy", Appl.Phys.Lett., 78 (2001). 1535-1527.
- D.L.Peng, K.Sumiyama, T.J.Konno T.Hihara and S.Yamamuro: "Characteristic Transport Properties of CoO-

Coated Mmonodispersive Co Cluster Assemblies", Phys.Rev., B60 (1999) 2093-2100.

- D.L.Peng, K.Sumiyama, S.Yamamuro, T.Hihara and T.J.Konno: "Preparation and Magnetic Properties of Oxide-Coated Monodispersive Co Cluster Assembly", Phys.Stat.Sol., (a) 172 (1999) 209-216.
- 20) D.L.Peng, K.Sumiyama, T.Hihara, S.Yamamuro and T.J.Konno: "Magnetic Properties of Monodispersed Co/CoO Clusters", Phys.Rev., B61 (2000) 3103-3109.
- 21) D.L.Peng, T.Hihara and K.Sumiyama: "Formation and Magnetic Properties of Fe-Pt Alloy Clusters by Plasma-Gas Condensation", Appl.Phys.Lett., 83 (2003) 350-352.
- 22) R.Katoh, T.Hihara, D.L.Peng and K.Sumiyama: "Composite Deposition of Co and Si Clusters by RF/DC Plasma-Gas-

Condensation, Appl.Phys.Lett., 82 (2003) 2688-2690.

- 23) R.Katoh, K.Sumiyama, T.Hihara and D.L.Peng: "Composite state control and magnetic properties of cobalt and silicon cluster assemblies prepared with double plasma discharge sources", Mat.Trans.JIM, (2004) in press.
- 24) T.B.Massalski, J.L.Murray, L.H.Bennett,H.Baker and L.Kacprzak: "Binary Alloy Phase Diagrams", Metals Park, Ohio, American Society of Metals (1986) p.801.
- H.Mori, M.Komatsu, K.Takeda and H.Fujita: "Spontaneous Alloying of Copper into Gold Atom Clusters", Phil.Mag.Lett., 63 (1991) 173-178.
- 26) F.R.de Boer, R.Boom, W.C.Mattens and A.R.Miedema: "Cohesion in Metals - Transition Metal Alloys", North-Holland, Amsterdam (1988) p.662.