

立石賢司、du Boulay Douglas*、石沢伸夫* (東工大総理工、名工大セ研*)

- 1. $Mn^{3+}(t_{2g}^{3}e_{g}^{1})$, $Mn^{4+}(t_{2g}^{3}e_{g}^{0})$ が別々にdisorderして存在
- 2. Mn^{3+} 上の e_g 電子は熱活性過程でMn間を遷移
- 3. 相転移温度以下ではMn³⁺,Mn⁴⁺は電荷整列

MD計算で用いたmodel

- 1. model 1: Mn³⁺, Mn⁴⁺を16d席にランダムに配置
- 2. model 2: Mn³⁺, Mn⁴⁺の分布が時間変化
- 3. model 3: Mn³⁺, Mn⁴⁺を秩序的に配列

分子動力学計算

ポテンシャル関数

 $U(r_{ii}) = Z_i Z_j e^2 / r_{ii} + f_0 (b_i + b_j) \times \exp[(a_i + a_j - r_{ij}) / (b_i + b_j)]$

格子定致と原子坐得	
	Lattice

	Lattice parameters /Å	
	MD	Expt. ¹⁾
	8.250(1)	8.2468(2)
Atoms	x=y=z (MD)	x=y=z(Expt.)
Li	0.1249	0.125
Mn^{3+}	0.5006	0.5
Mn^{4+}	0.4995	0.5
Ο	0.2630	0.2625(1)

1) C. Fong et al, Zeitschrift für Kristallographie, 209 (1994) 941

既往の報告との一致点

構造

•構造の乱れ

ー部のLiが四面体から飛び出し、空孔 八面体内に分布

Liのダイナミクス

•Mnの電荷整列とLiの自己拡散は相関 電荷整列するとLiの拡散は起こらない

MD計算結果

MD計算結果

Model 2 (Mn原子価が時間変化) Model 3 (電荷整列モデル)

平均場を仮定したポテンシャル曲線

隣接8a席にLiがある場合(黒線) 隣接8a席にLiがない場合(赤線)

Mnの分布とポテンシャル曲線

100ps後の構造とポテンシャル曲線

16c席近接のMnの原子価分布

ジャンプ後

Li-Mnの静電反発力の低下

Li拡散機構の模式図

結果

LiMn₂O₄中でのLiの拡散 1. 隣接Liの影響 2. 16c席に近接するMnの平均電荷の低下 拡散先のポテンシャルエネルギーの低下 Mn^{3+} の e_g 電子のホッピングとLiの拡散は カップリングしている