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The asymmetry of diffraction peak profiles observed with a high-resolution

synchrotron powder X-ray diffractometer has been successfully removed by a

double deconvolution method. In the first step, the asymmetry caused by the

axial divergence aberration of the diffractometer is removed by a whole-pattern

deconvolution method based on an a priori theoretical model for the aberration.

In the second step, the residual asymmetry, the origin of which can be ascribed to

the aberrations of the beamline optics, is also removed by a whole-pattern

deconvolution method, based on an empirical model derived from the analysis

of experimental diffraction peak profiles of a standard Si powder (NIST

SRM640b). The beamline aberration has been modelled by the convolution of a

pseudo-Voigt or Voigt function with an exponential distribution function. It has

been found that the angular dependence of the asymmetry parameter in the

exponential function is almost proportional to tan�, which supports the idea that

the residual asymmetry should be ascribed mainly to the intrinsic asymmetry in

the spectroscopic distribution of the source X-ray supplied by the beamline

optics of the synchrotron facility. Recently developed procedures of whole-

pattern deconvolution have been improved to treat the singularity of the

instrumental function in the measured angular range. Formulae for the whole-

pattern deconvolution based on the Williamson–Hall-type dependence of the

width parameter of the instrumental function have also been developed. The

method was applied to the diffraction intensity data of a standard ZnO powder

sample (NIST SRM674) measured with a high-resolution powder diffractometer

on beamline BL4B2 at the Photon Factory. The structure parameters of ZnO

were refined from the integrated peak intensities, which were extracted by an

individual profile fitting method applying symmetric profile models. The refined

structure parameters coincide fairly well with those obtained from single-crystal

data.

1. Introduction

Previously, we have reported the exact theoretical

formulae of the axial-divergence aberration function for a

high-resolution synchrotron X-ray powder diffractometer

with a crystal analyser (Ida et al., 2001), and also

proposed an analytical method based on a Fourier analysis

to remove the aberration from the observed data (Ida,

Hibino & Toraya, 2003). The peak profiles obtained by

the deconvolution of the axial-divergence aberration have

shown residual asymmetry, which could be ascribed to the

aberration of the monochromator and focusing optics on

the beamline (beamline aberration). However, the origin

of the residual asymmetry was not clear, except that the

dependence of the residual asymmetry on the diffraction

angles was found to be almost linear within a limited

angular range of 10 � 2� � 40�.

The application of the deconvolution method was restricted

to the low-angle data in our previous study, partly because the

original formula of the whole-pattern deconvolution with

abscissa-scale transformation (Ida, Hibino & Toraya, 2003) for

the axial-divergence aberration with a crystal analyser with a

Bragg angle of �A has a singularity at the diffraction angle 2�
= 90� + �A, which means that an infinitely large number of

temporary data would be required near the singular point on

the numerical process. Furthermore, interpretation of the data

measured with a multiple-detector system (MDS) on beamline

BL4B2 at the Photon Factory was complicated because of the

possible differences in the instrumental functions of different

detectors.

Recently, we have developed an automatic method to adjust

the variation of the instrumental functions of multiple detec-

tors (Ida, 2005), which greatly simplifies the interpretation of

the data measured with the MDS.
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In this study, a modified formula for the whole-pattern

deconvolution, which can be applied to remove the axial-

divergence aberration from all the diffraction intensity data

over the singular point, has been developed. Eleven diffrac-

tion peak profiles of a standard Si powder (NIST SRM674b) in

the range 24.0� 2�� 148.4�, measured at a wavelength of � =

1.306 Å, are analysed in detail. The formula for removing the

beamline aberration is modified according to the results of the

detailed analysis of the diffraction peak profiles of the stan-

dard sample. The improved deconvolution methods to remove

the axial-divergence and beamline aberrations are applied to

the diffraction intensity data of a standard ZnO powder (NIST

SRM674), measured in a multiple-detector mode, and the

symmetric features of the experimental peak profiles are

discussed.

2. Theory

2.1. Axial-divergence aberration function

The effect of axial divergence, limited by a set of Soller slits

on the diffracted-beam side of the goniometer, is the only

significant aberration arising from the optics of a high-reso-

lution synchrotron X-ray powder diffractometer (Ida et al.,

2001). The instrumental function for the axial-divergence

aberration is given by

!Að�2�Þ ¼
j�Aj�1½ð��2�=�AÞ�1=2 � 1�

for � 1<�2�=�A < 0;
0 elsewhere;

8<
: ð1Þ

with

�A ¼ ð�2=2Þðcot 2� þ tan �AÞ; ð2Þ

where � is the full width at half-maximum (FWHM) of the

angular distribution of the axially divergent beam restricted by

the Soller slits, and �A is the Bragg angle at the crystal

analyser (Ida et al., 2001). Note that the instrumental function

approaches the Dirac delta function at the singular point 2�s

= �/2 + �A, where the characteristic width �A of the aberra-

tion function approaches zero. The above formulae are valid

for both positive and negative value of �A; that is, they cover

all the possible diffraction angles, 0 < 2� < �, including the

range �/2 + �A < 2� < �, except the singular point at 2�s.

Although the width of the instrumental function depends

on the diffraction angle 2�, abscissa-independent formulae of

the instrumental function can be derived by applying the

following function for the scale transformation about the

abscissa from 2� to � (Ida & Toraya, 2002):

� ¼GAð2�Þ
¼ ð2� sin �A � cos �A ln j sin 2� tan �A þ cos 2�jÞ
� ð2=�2Þ cos �A; ð3Þ

for 0 < 2� < 2�s, and

� ¼GAð2�Þ
¼ � ð2� sin �A � cos �A ln j sin 2� tan �A þ cos 2�jÞ
� ð2=�2Þ cos �A; ð4Þ

for 2�s < 2� < �, both of which satisfy the following relation:

��=�2� ¼ 1=j�Aj: ð5Þ
This means that the width and the shape of the aberration

function become constant on the transformed scale � on the

abscissa.

The scale-transform function GA(2�) diverges to 1 and

�1 at the singular point 2�s for the ranges 2� < 2�s and 2�s

< 2�, respectively. The singularity or infinity can be avoided by

separating the data into three parts in numerical calculations,

namely the lower- and higher-angle regions, and the inter-

mediate region around 2� ’ 2�s. The method to treat the

intermediate region is discussed in the following section in

detail.

The abscissa-independent formula of the instrumental

function is then given by

wAð��Þ ¼
ð���Þ�1=2 � 1

for � 1<��< 0;
0 elsewhere;

8<
: ð6Þ

for 2� < 2�s, and

wAð��Þ ¼
ð��Þ�1=2 � 1

for 0<��< 1;
0 elsewhere;

8<
: ð7Þ

for 2� > 2�s.

The Fourier transform of the abscissa-independent instru-

mental function wA(�), defined by

WAð�Þ ¼
Z 1
�1

wAð�Þ expð2�i��Þd�;

for the range 2� < 2�s is given by

WAð�Þ ¼ ��1=2½Cð2�1=2Þ � iSð2�1=2Þ�
� ð2�i�Þ�1½1� expð�2�i�Þ�; ð8Þ

for � > 0, and

WAð�Þ ¼ j�j�1=2½Cð2j�j1=2Þ þ iSð2j�j1=2Þ�
� ð2�i�Þ�1½1� expð�2�i�Þ� ð9Þ

for � < 0, where C(x) and S(x) are the Fresnel functions

defined by

CðxÞ � Rx
0

cosð�t2=2Þ dt ð10Þ

and

SðxÞ � Rx
0

sinð�t2=2Þ dt: ð11Þ

The Fourier formulae for 2� > 2�s are simply given by the

Hermite conjugate of WA(�) for 2� < 2�s.
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2.2. Treatment of the singularity in the axial-divergence
aberration function

The axial-divergence aberration function !A(�2�) has non-

zero values only in the range�|�A| < �2� < 0 for 2� < 2�s, and

0 < �2� < |�A| for 2� > 2�s, as shown in equation (1). Then the

maximum width of the function !A(�2�) immediately corre-

sponds to the value

j�Aj ¼ ð�2=2Þj cot 2� þ tan �Aj;
which can be approximated for a small deviation from 2�s as

j�Aj ’ �2j2� � 2�sj=2 cos2 �A: ð12Þ
If the width of the instrumental function is much narrower

than the interval of the measurement step, the convolution or

deconvolution of the instrumental function will not affect the

intensity profiles, practically. In the current method, the data

in the range where the width of the instrumental function is

narrower than 1/10 of the measurement step are left

unchanged and simply combined with the deconvoluted data

in the lower- and higher-angle ranges. Actually, the width of

the axial-divergence instrumental function was narrower than

0.0005� in the range 98.4 < 2� < 104.6�, for � = 1� and �A =

11.535�. The scheme for the segmentation, deconvolution and

combination of data is illustrated in Fig. 1.

2.3. Asymmetry caused by the beamline aberration

The asymmetry caused by the beamline aberration is

modelled by the convolution with an exponential distribution

function with the following form (Ida, Hibino & Toraya, 2003):

!Eð�2�Þ ¼
j�j�1 expð��2�=�Þ

for �2�=�> 0;
0 elsewhere:

8<
: ð13Þ

The parameter � can be treated as the measure of asymmetry.

The longer tail on the lower- or higher-angle side of a peak

corresponds to the negative or positive sign of �, respectively.

When the angular dependence of � is assumed to be given

by

� ¼ �Eð2�Þ ¼ �X sec � þ �Y tan �; ð14Þ
which is identical to the Williamson–Hall-type dependence on

the diffraction angle (Williamson & Hall, 1953), singularity

may appear at sin � = ��X/�Y for the case �Y/�X < �1.

Formally, the singular point 2�s is calculated by

2�s ¼ �2 arcsinð�X=�YÞ ð15Þ
for �Y/�X < �1. The formulae for the scale transform, the

abscissa-independent instrumental functions and the Fourier

transform are given by

GEð2�Þ ¼ ð2=�YÞ ln j�X=�Y þ sin �j; ð16Þ

wEð�Þ ¼ expð�xÞ for x> 0,

0 elsewhere,

�
ð17Þ

WEð�Þ ¼ 1=ð1� 2�i�Þ ð18Þ
for the case � > 0, and

GEð2�Þ ¼ �ð2=�YÞ ln j�X=�Y þ sin �j; ð19Þ

wEð�Þ ¼ expðxÞ for x< 0,

0 elsewhere,

�
ð20Þ

WEð�Þ ¼ 1=ð1þ 2�i�Þ ð21Þ
for the case � < 0.

If necessary, the possible singularity would be treated by the

segmentation–deconvolution–combination scheme described

in the preceding section.

2.4. Removal of asymmetry

Assuming the Williamson–Hall-type dependence, the

asymmetry caused by the beamline aberration would be

removed by deconvolution with an appropriate scale trans-

formation as shown in x2.3. However, the deconvolution

generally causes an increase of noise to compensate for the

sharpened peak profiles in the deconvoluted data. Further-

more, there is no theoretical basis for the assumption that the

exponential formula should be used as the model for the

asymmetry caused by the beamline optics, while the formula

for the axial-divergence aberration has unambiguously been

derived from the geometry of the optics and the theory of

diffraction.

In order to suppress the increase of noise, and also to

reduce changes in the characteristics of the peak profiles,

except the asymmetry, convolution with a symmetric function

wS(�) with the Fourier form

WSð�Þ ¼ jWEð�Þj
¼ ð1þ 4�2�2Þ�1=2 ð22Þ

is simultaneously applied with the deconvolution of wE(�).

The symmetric function wS(�), defined as the inverse Fourier

transform of WS(�), is simply given by
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Figure 1
Scheme for treating data near the singular point 2�s of instrumental
functions in the whole-pattern deconvolution method. Three sets of
partly overlapping segmented data are created from the initial data. The
lower- and higher-range data are treated by deconvolution and combined
with the middle-range data, 2�s � �2�s � 2� � 2�s + �2�s, where the
width of the instrumental function is narrower than 1/10 of the
measurement step interval. The data are combined again by calculating
weighted averages of data in the overlapped regions.
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wSð�Þ ¼ ��1K0ð�Þ; ð23Þ

where K0(x) is the modified Bessel function of the second

kind.

3. Experimental

The powder diffraction data were collected with the multiple-

detector system on beamline BL4B2 at the Photon Factory in

Tsukuba (Toraya et al., 1996). The axial divergence of the

diffracted beam was limited within � = 1� FWHM with a set of

Soller slits.

The Bragg angle of the Ge(111) crystal analyser for the

calibrated source X-ray wavelength of � = 1.306 Å was esti-

mated at �A = 11.535�.
Standard Si powder (NIST SRM640b), filled into the hollow

of the flat-plate specimen holder of diameter 30 mm, was used

to evaluate the instrumental functions of the measurement

system, which may be affected by the spectroscopic intensity

distribution of the source X-ray. The specimen was rotated

about its surface normal at one revolution s�1 during the

measurement.

The diffraction intensity data of 11 reflection peaks from the

standard Si specimen were collected with a single-detector 2�
scan mode, using one of the multiple detectors. The step

interval of the 2� scan was 0.005�. The measurement time at

each step was 1 s for the 111, 220, 311, 400 and 422 reflections,

and 8 s for the 711/551, 642, 731/553 and 800 reflections.

The counting losses caused by the finite response time of the

detector system were corrected by an intermediately extended

dead-time model (Ida & Iwata, 2005).

A flat-plate specimen of standard ZnO powder (NIST

SRM674) was used as a test sample for the current method to

symmetrize the experimental diffraction peak profiles. The

diffraction data, ranging from �1.43 to 154.98� in 2�, were

collected by a MDS measurement method. The measurement

time at each step was 4 s. Further details of the apparatus, the

measurement conditions for the ZnO specimen and the

method to connect the segmented intensity data from the

multiple detectors, have been described elsewhere (Ida, 2005).

4. Analysis

4.1. Calibration of instrumental characteristics

4.1.1. Evaluation of asymmetry. In a first step, the aberra-

tions caused by the divergence of the diffracted beam along

the axial direction were removed from the Si diffraction

intensity data by a deconvolution method recently developed

by the authors (Ida, Hibino & Toraya, 2003) but with appli-

cation of the modification described here in x2.2. The results of

the deconvolution of axial divergence applied to the 111 and

711/551 reflection data are shown as triangles in Figs. 2(b) and

3(b).

After the removal of the axial-divergence aberrations, slight

asymmetry of the diffraction peak profiles still remained,

similarly to our previous results (Ida, Hibino & Toraya, 2003).

The asymmetric deconvoluted profiles were fitted with an

asymmetric function defined by the convolution of a pseudo-
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Figure 2
The 111 peak profiles of standard Si (NIST SRM640b) powder. (a) Raw
intensity profile; (b) deconvoluted profile (triangles) and the fitted
asymmetrized pseudo-Voigt function; (c) difference plot of the fitting
shown in (b); (d) symmetrized profile (circles) and the fitted pseudo-Voigt
function; (e) difference plot of the fitting shown in (d). In the difference
plots, statistical uncertainties calculated based on counting statistics are
shown as broken lines.

Figure 3
The 711/551 peak profiles of standard Si (NIST SRM640b) powder. See
the caption of Fig. 2 for definitions.

electronic reprint



Voigt function with an asymmetric exponential function

!E(�2�) given in x2.3. The pseudo-Voigt function is defined

by

fpVðx; �S; 	Þ ¼ ð1� 	ÞfG½x; �S=2ðln 2Þ1=2� þ 	fLðx; �S=2Þ;
ð24Þ

where fGðx; �GÞ is the Gaussian function given by

fGðx; �GÞ ¼ ��1=2��1
G expð�x2=�2

GÞ; ð25Þ
and fLðx; �LÞ is the Lorentzian function given by

fLðx; �LÞ ¼ ��1�L=ð�2
L þ x2Þ: ð26Þ

The constant background b, integrated intensity S, peak

position 2�0, FWHM of the symmetric component �S, shape

parameter for the pseudo-Voigt function 	, and the asymmetry

parameter � in the asymmetric component function, are

treated as adjustable profile parameters to be optimized.

Figs. 2(b), 2(c), 3(b) and 3(c) show the results of fitting and

difference plots. The optimized profile parameters for the 11

reflection of Si are listed in Table 1. The R factors defined by

Rp ¼
P

i

jyiðobs:Þ � yiðcalc:Þj=P
i

jyiðobs:Þj ð27Þ

and
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Table 1
Profile parameters of the deconvoluted Si standard diffraction peaks fitted with asymmetrized pseudo-Voigt function.

hkl b S 2�0 (�) �S (�) 	 � (�) Rp (%) Rwp (%)

111 21 (7) 1459 (9) 24.0546 (3) 0.0208 (5) 0.829 (17) �0.0038 (4) 2.12 4.26
220 47 (4) 1080 (4) 39.7856 (2) 0.0266 (4) 0.876 (14) �0.0067 (3) 1.74 3.26
311 49 (5) 654 (4) 47.0296 (5) 0.0307 (9) 0.882 (3) �0.0081 (5) 2.90 4.37
400 26 (3) 186 (2) 57.5243 (10) 0.0395 (17) 0.888 (4) �0.0091 (11) 3.95 6.13
422 55 (4) 451 (2) 72.2169 (4) 0.0429 (7) 0.813 (19) �0.0143 (4) 2.26 3.79
440 32.7 (9) 142.9 (6) 85.7589 (3) 0.0518 (6) 0.812 (14) �0.0171 (3) 1.54 2.62
533 27.3 (11) 84.5 (7) 104.1382 (5) 0.0701 (10) 0.77 (2) �0.0226 (6) 1.85 2.43
711/551 29.5 (8) 144.8 (7) 118.4025 (5) 0.0877 (11) 0.873 (16) �0.0307 (6) 1.76 2.55
642 38.5 (17) 254.4 (16) 128.3363 (6) 0.1044 (13) 0.826 (19) �0.0382 (7) 1.84 2.57
731/553 33.3 (8) 191.9 (10) 134.9948 (6) 0.1215 (15) 0.844 (17) �0.0450 (8) 1.94 2.72
800 21.1 (10) 35.2 (13) 148.388 (3) 0.189 (7) 0.88 (8) �0.060 (4) 4.89 6.01

Figure 4
The angular dependence of the asymmetry parameter � for the
measurement of Si powder (triangles). The optimized Williamson–Hall-
type dependence is shown as a solid curve.

Table 2
Profile parameters of the deconvoluted Si standard diffraction peaks fitted with the asymmetrized extended pseudo-Voigt function.

hkl b S 2�0 (�) �L (�) �G � (�) Rp (%) Rwp (%)

111 32 (7) 1453 (9) 24.0542 (4) 0.01633 (17) 0.0099 (6) �0.0034 (4) 1.95 4.00
220 54 (4) 1075 (4) 39.7855 (3) 0.0225 (3) 0.0101 (9) �0.0066 (3) 1.84 3.40
311 53 (6) 651 (5) 47.0296 (5) 0.0261 (9) 0.0114 (17) �0.0081 (6) 2.94 4.48
400 28 (3) 185 (2) 57.5242 (10) 0.0336 (13) 0.15 (3) �0.0089 (11) 3.90 6.13
422 62 (4) 446 (3) 72.2169 (4) 0.0323 (8) 0.0207 (14) �0.0143 (5) 2.31 3.86
440 35.2 (11) 141.0 (7) 85.7590 (3) 0.0385 (7) 0.0257 (12) �0.0172 (4) 1.58 2.70
533 29.5 (12) 82.7 (7) 104.1382 (5) 0.0475 (17) 0.040 (2) �0.0226 (6) 1.84 2.45
711/551 30.8 (9) 143.3 (9) 118.4026 (5) 0.0720 (15) 0.036 (3) �0.0308 (6) 1.82 2.60
642 41.9 (19) 250.0 (19) 128.3365 (6) 0.078 (2) 0.052 (3) �0.0384 (7) 1.89 2.60
731/553 34.9 (9) 189.3 (12) 134.9949 (6) 0.095 (2) 0.056 (3) �0.0451 (8) 1.94 2.76
800 21.3 (11) 34.8 (15) 148.388 (3) 0.156 (18) 0.08 (2) �0.060 (4) 4.59 6.00

Figure 5
The angular dependence of the Lorentzian width �L (triangles) and the
Gaussian width �G (crosses) of the Voigtian profile assigned to the
symmetric part of the deconvoluted diffraction peak profile of Si powder,
evaluated by profile fitting with asymmetrized Voigt profiles to the data
after deconvolution of axial divergence aberration. The optimized
dependences obtained by a non-linear fitting procedure are shown as
solid and broken curves, respectively.
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Rwp ¼
P

i

wijyiðobs:Þ � yiðcalc:Þj2
� �1=2

� P
i

wiy
2
i ðobs:Þ

� ��1=2

; ð28Þ

where wi is the weight for the least-squares fitting, are also

listed in the table.

The optimized value of asymmetry parameter � for each

reflection is plotted versus the diffraction angle in Fig. 4. The

dependence of the asymmetry parameter � is fitted by the

Williamson–Hall-type dependence given by equation (14).

The optimized coefficients of the secant and tangent terms, �X

and �Y, are

�X ¼ 0:0000 ð3Þ�;
�Y ¼ �0:0184 ð5Þ�:

The apparent asymmetry has almost a purely tangential

dependence on 2�, which supports the idea that it is caused by

the spectroscopic distribution of the source X-ray supplied by

the beamline optics.

The deconvoluted profiles were also analysed by fitting with

a function calculated as the convolution of the extended-

pseudo-Voigt function (Ida et al., 2000), which is practically

equivalent to the exact Voigt profile, with the asymmetric

component function !E(�2�) as the profile model. The opti-

mized profile parameters are listed in Table 2. The values of

the asymmetry parameter � coincide reasonably with those

obtained from the profile fitting using the pseudo-Voigt

function.

Fig. 5 shows the angular dependence of the Lorentzian and

Gaussian FWHM values of the extended-pseudo-Voigt

approximation to the Voigt profile assigned to the symmetric

part of the deconvoluted profile. The angular dependences of

the Lorentzian and Gaussian widths are assumed to be

expressed by the following equations:

�L ¼ �LX sec � þ �LY tan �; ð29Þ
and

�2
G ¼ �2

GX sec2 � þ �2
GY tan2 �: ð30Þ

The optimized values of the coefficients, �LX, �LY, �GX and

�GY are

�LX ¼ 0:0105 ð3Þ�;
�LY ¼ 0:0281 ð7Þ�;
�GX ¼ 0:0077 ð4Þ�;
�GY ¼ 0:0235 ð5Þ�:

The coefficients of the secant terms, �LX and �GX, should be

unaffected during the removal of the asymmetric component,

because the asymmetry has purely tangential dependence. If

the secant terms of the Lorentzian and Gaussian components

are assigned to isotropic size broadening of spherical crystal-

lites, the area- and volume-weighted average diameters are

formally estimated at
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Table 4
Profile parameters for the symmetrized Si diffraction peaks individually fitted with the Voigt function.

hkl b S 2�0 (�) �L (�) �G (�) Rp (%) Rwp (%)

111 31 (5) 1454 (7) 24.05477 (6) 0.0165 (2) 0.0122 (4) 1.93 3.37
220 45 (4) 1080 (4) 39.78555 (7) 0.0234 (3) 0.0159 (5) 1.79 3.00
311 47 (6) 655 (5) 47.02951 (14) 0.0274 (6) 0.0184 (10) 2.87 3.91
400 27 (3) 186 (2) 57.5252 (2) 0.0350 (8) 0.0221 (17) 3.43 4.66
422 50 (4) 454 (3) 72.21622 (14) 0.0365 (8) 0.0302 (11) 2.40 3.48
440 30.0 (13) 144.8 (8) 85.75891 (12) 0.0451 (8) 0.0351 (11) 1.78 2.57
533 24.2 (12) 86.8 (8) 104.13889 (16) 0.0599 (15) 0.0471 (17) 1.86 2.55
711/551 24.8 (10) 150.0 (10) 118.40266 (19) 0.0881 (15) 0.051 (2) 1.95 2.51
642 25 (2) 269 (2) 128.3361 (3) 0.105 (2) 0.061 (3) 2.23 3.35
731/553 27.4 (10) 200.1 (13) 134.9944 (3) 0.122 (2) 0.073 (3) 1.95 2.62
800 18.1 (10) 39.7 (14) 148.3912 (9) 0.221 (14) 0.06 (2) 3.83 4.95

Table 3
Profile parameters for the symmetrized Si diffraction peaks individually fitted with a pseudo-Voigt function.

hkl b S 2�0 (�) �S (�) 	 Rp (%) Rwp (%)

111 15 (6) 1463 (8) 24.05478 (7) 0.0232 (2) 0.770 (13) 2.18 3.86
220 31 (4) 1089 (4) 39.78555 (6) 0.0317 (2) 0.80 (9) 1.60 2.96
311 37 (5) 662 (4) 47.02953 (13) 0.0369 (5) 0.805 (17) 2.72 3.84
400 24 (4) 188 (2) 57.5252 (2) 0.0460 (8) 0.83 (3) 3.52 4.78
422 40 (3) 462 (2) 72.21623 (12) 0.0537 (4) 0.763 (13) 2.32 3.46
440 26.8 (9) 147.5 (6) 85.75891 (9) 0.0646 (3) 0.781 (9) 1.52 2.42
533 22.7 (10) 88.4 (7) 104.13891 (15) 0.0861 (5) 0.780 (15) 1.76 2.45
711/551 23.4 (8) 151.8 (8) 118.40265 (16) 0.1118 (6) 0.850 (10) 1.67 2.34
642 23 (2) 272.1 (19) 128.3361 (2) 0.1337 (8) 0.846 (13) 1.97 3.21
731/553 26.1 (8) 202.8 (10) 134.9944 (2) 0.1564 (8) 0.842 (10) 1.78 2.47
800 18.4 (11) 39.5 (15) 148.3912 (9) 0.239 (4) 0.94 (5) 3.84 4.94
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hDiA ¼ 340 ð9Þ nm;

hDiV ¼ 479 ð17Þ nm:

(see Appendix A).

4.1.2. Validation of the evaluated asymmetry. The Si

diffraction peak profiles obtained by the deconvolution of the

axial-divergence aberration from the observed profiles are

symmetrized by the deconvolution of the exponential asym-

metry followed by the convolution of the corresponding

Bessel function, as described in x2.4. It should be noted that

this process might not be necessary for analysis of the standard

data for characterization of the instrument, but is useful for

testing the validity of the analytical method. The angular

dependence given by equation (14), and the values �X =

0.0000� and �Y = �0.0184� are applied.

The symmetrized diffraction peak profiles of Si 111 and 711/

551 reflections are shown as circles in Figs. 2(d) and 3(d). The

symmetrized profiles were fitted with the Voigt function,

applying the numerical method proposed by Poppe & Wijers

(1990), which is more accurate but takes more computation

time than the extended-pseudo-Voigt approximation. The

application of the more accurate formula is possible because

there is no need for the calculation of the convolution with an

asymmetric function for the analysis of the symmetrized

profiles.

The profile parameters optimized by the individual Voigtian

profile fittings are listed in Table 4.

Even though the uncertainties of the FWHM values of the

Lorentzian and Gaussian components, �L and �G, optimized

for the symmetrized profiles, are not significantly different

from those obtained in x4.1.1, the effect of mutual correlation

between �L and �G appears more pronounced here, as can be

seen in Table 4 and the plot in Fig. 5. It suggests the degra-

dation of the deconvoluted data, which may be caused by the

neglect of the off-diagonal elements of the error matrix (Ida &

Toraya, 2002).

Therefore, an iterative profile fitting procedure was

performed, applying the constraints given by equations (29)

and (30). The optimized values of the coefficients, �LX, �LY,

�GX and �GY are

�LX ¼ 0:0082 ð4Þ�;
�LY ¼ 0:0398 ð8Þ�;
�GX ¼ 0:0105 ð6Þ�;
�GY ¼ 0:0311 ð7Þ�:
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Figure 6
The angular dependence of the Lorentzian width �L (triangles) and the
Gaussian width �G (crosses) of the Voigtian profile fitted to the
symmetrized peak profile of Si powder, evaluated by profile fitting with
the Voigt profile to the symmetrized data. The optimized dependences
evaluated by a constrained profile fitting procedure are shown as solid
and broken curves, respectively.

Table 5
Profile parameters for the symmetrized Si diffraction peaks fitted with the Voigt function with �LX = 0.0082�, �LY = 0.0398�, �GX = 0.0105� and �GY =
0.0311�.

hkl b S 2�0 (�) �L (�) �G (�) Rp (%) Rwp (%)

111 25 (7) 1457 (11) 24.05473 (11) 0.01685 0.01260 2.75 3.77
220 49 (4) 1078 (4) 39.78556 (7) 0.02310 0.01583 1.90 3.07
311 57 (6) 648 (6) 47.02963 (18) 0.02624 0.01771 3.63 4.73
400 37 (3) 179 (3) 57.5255 (4) 0.03117 0.02083 5.90 7.51
422 40 (3) 461 (2) 72.21628 (13) 0.03914 0.02612 2.57 3.75
440 25.7 (7) 147.5 (5) 85.75888 (12) 0.04810 0.03221 1.82 2.78
533 20.8 (5) 89.0 (3) 104.13884 (16) 0.06434 0.04337 1.95 2.70
711/551 28.2 (5) 146.6 (5) 118.4027 (2) 0.08269 0.05601 2.09 2.67
642 27.2 (11) 266.0 (11) 128.3359 (3) 0.10091 0.06855 2.47 3.44
731/553 28.9 (5) 198.1 (6) 134.9943 (3) 0.11735 0.07984 2.10 2.68
800 21.6 (3) 34.8 (3) 148.3913 (9) 0.17046 0.11629 3.96 5.18

Figure 7
Validation of the calibrated wavelength and systematic errors. The
nominal wavelength �hkl (crosses) and the values calculated by the
optimized model for systematic errors (solid line) are shown in the upper
part. The lower part shows the difference plot (solid line) with the errors
(broken lines) evaluated from the results of the profile fitting.
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The above values of the coefficients for the tangent terms, �LY

and �GY, should be affected by the convolution with the Bessel

function for smoothing, and be reasonably larger than the

values estimated in the preceding section. The values of the

secant-term coefficients, �LX and �LY, are again attributed to

the size broadening of spherical crystallites, and the area- and

volume-weighted averages are estimated at

hDiA ¼ 440 ð20Þ nm;

hDiV ¼ 490 ð20Þ nm:

The dependences calculated by the above parameters are

drawn as lines in Fig. 6. The profile parameters optimized with

the constraints are listed in Table 5. The changes in the opti-

mized profile parameters or R values on application of the

constraints are not significant, except the increase in the R

values of the 400 reflection of Si, which can be caused by the

intrinsically broader line width of the 400 reflection compared

with the value calculated on the assumption of isotropic

broadening.

4.1.3. Calibration of wavelength and systematic errors of

the goniometer. Assuming the certified lattice constant of the

standard Si powder (NIST SRM640b), a = 5.430940 (34) Å,

the peak wavelengths for the symmetrized peak profiles are

evaluated by a least-squares method. The optimized peak

positions obtained by the fitting with the pseudo-Voigt func-

tion to the symmetrized profiles, listed in Table 3, are used to

evaluate the wavelength.

The following model for systematic errors is assumed:

2�hkl ¼ 2�hkl ��2�0 ��2�1 cosð2�hkl � 2�2Þ; ð31Þ

where 2�hkl is the true diffraction angle related to the wave-

length � by the Bragg equation,

� ¼ 2aðh2 þ k2 þ l2Þ�1=2 sin �hkl; ð32Þ
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Figure 8
The 100 peak profiles of ZnO (NIST SRM674) powder. See the caption of
Fig. 2 for definitions.

Figure 9
The 205 peak profiles of ZnO powder. See the caption of Fig. 2 for
definitions.

Figure 10
The 216 peak profiles of ZnO powder. See the caption of Fig. 2 for
definitions.
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2�hkl is the observed peak position, and �2�0, �2�1, 2�2 are

parameters for modelling mechanical systematic errors of the

goniometer. The second term in equation (31) models a

constant offset error, and the third term models a deviation

with the periodicity of 360�, which may be assigned to a gear

eccentricity error (Toraya et al., 1993; Hart et al., 1990).

The optimized peak wavelength, offset and eccentricity

errors are estimated at

� ¼ 1:306348 ð12Þ Å;

�2�0 ¼ 0:006 ð2Þ�;
�2�1 ¼ 0:0122 ð6Þ�;
2�2 ¼ 107 ð8Þ�:

In order to examine the appropriateness of the assumed

systematic errors, the nominal wavelength �hkl calculated from

each peak position 2�hkl by

�hkl ¼ 2dhkl sin �hkl; ð33Þ

and the curve calculated by

�0ð2�Þ ¼ ð�= sin �Þ sin½�þ�2�0=2

þ ð�2�1=2Þ cosð2�� 2�2Þ�; ð34Þ

are compared in Fig. 7. It has been confirmed that good

coincidence is achieved by the above model for mechanical

systematic errors.

When the strain broadening is assumed to be negligible in

the standard Si powder, the tangent terms in equation (14) are

assigned to the spectroscopic distribution of the source X-ray,

while the secant terms in equations (29) and (30) are

connected with the size broadening of the Si crystallites.

4.2. Analysis of ZnO powder diffraction data

4.2.1. Deconvolution of axial-divergence aberration. The

effect of the axial-divergence aberration has been removed

from the powder diffraction intensity data of ZnO by a

modified algorithm for the whole-pattern deconvolution

method, as described in x2.2.

The singular point of the aberration function is located at

2�s = 90� + �A = 101.54�. By applying equation (12) for the

tolerable width of the aberration function, 0.0005�, which is 1/
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Figure 11
The Lorentzian (triangles) and Gaussian (crosses) FWHM values of the
ZnO diffraction peaks. The optimized and difference curves are shown in
the upper and lower panels, respectively.

Table 6
Structure parameters of ZnO.

This work Abrahams & Bernstein (1969) Albertsson & Abrahams (1989)

Specimen Powder Single crystal Single crystal
Source Synchrotron X-ray Laboratory X-ray Neutron
No. of reflections 42 141 394

z(O) 0.3827 (8) 0.3825 (14) 0.3819 (1)
U(Zn) (Å2) 0.0080 (3)
U(O) (Å2) 0.0086 (9)
U11(Zn) (Å2) 0.0079 (2) 0.0073 (4)
U33(Zn) (Å2) 0.0080 (4) 0.0094 (4)
U11(O) (Å2) 0.0065 (11) 0.0056 (4)
U33(O) (Å2) 0.0095 (21) 0.0064 (4)

R (%) 0.85 3.78 2.31
Rw (%) 1.57 5.12 3.67

Figure 12
The structure factor |F| of ZnO powder. The experimental values are
shown as crosses and the calculated values are drawn as a line in the
upper part. The lower part shows the difference.
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10 of the measurement step, the data ranging from 98.39� to

104.69� in 2� are assumed to be unaffected by the axial-

divergence aberration. The lower-angle data below 100.49�

and the higher-angle data above 102.59� were separately

treated by the original whole-pattern deconvolution method

(Ida, Hibino & Toraya, 2003), and combined again with the

original data in the range 98.39–104.69�.
Figs. 8–10 show the change in the peak profiles of the 100,

205 and 216 reflections of ZnO, through the deconvolution

and symmetrization processes.

The effects of the deconvolution of the axial-divergence

aberration are only significant in the low-angle range, as can

be seen for the 100 reflection in Fig. 8. The asymmetry of the

initial data is reduced and the peak position is shifted to the

higher-angle side after the deconvolution of the axial-diver-

gence effect.

The peak profile of the 205 reflection of ZnO located near

the singular point 2�s is not changed in the deconvolution

process. The higher-angle tail of the 216 reflection, located

above 2�s, is slightly reduced and the peak is shifted to the

lower-angle side after the deconvolution of the axial-diver-

gence aberration.

4.2.2. Symmetrization of the peak profiles. The asymmetry

modelled by the convolution with an exponential distribution

function was also removed by the whole-pattern deconvolu-

tion method.

As can be seen in Figs. 8–10, the asymmetry of the

diffraction peak profiles of the ZnO powder has certainly been

removed by the symmetrization process. Shifts of the apparent

peak positions through the symmetrization process are also

observed. The peak positions of the symmetrized peak profiles

naturally correspond to the hypothetical symmetric spectral

distribution of the source X-ray, the peak position of which is

located at � = 1.306348 (12) Å. Note that the value of the peak

wavelength was determined from the symmetrized peak

profiles of the standard Si powder obtained by the same

method.

The isotropic broadening model given by equations (29)

and (30) is applied to fit the line-width parameters �L and �G

evaluated by the individual peak profile fittings with the Voigt

function to the symmetrized ZnO peak profiles. The results of

the least-squares fitting are shown in Fig. 11. The optimized

parameters are

�LX ¼ 0:0372 ð6Þ;
�LY ¼ �0:0127 ð10Þ;
�GX ¼ 0:0076 ð18Þ;
�GY ¼ 0:054 ð2Þ:

Even though the main features of the observed dependence

are apparently reproduced by the above parameters, the

negative sign of �LY indicates that the isotropic broadening

modelled by the combination of secant and tangent depen-

dences is not reasonable for the angular dependence of the

observed profiles.

4.2.3. Evaluation of lattice constants. The lattice constants

of the ZnO sample are evaluated from the positions of the

symmetrized diffraction peaks. The formula for the systematic

errors given by equation (31) is again assumed, fixing the

wavelength at � = 1.306348 Å. The lattice parameters a and c,

the constant shift �2�0, and parameters for the eccentricity

errors �2�1 and 2�2, are treated as variable parameters to fit

the observed peak positions. The optimized values of the

parameters are

a ¼ 3:249847 ð18Þ Å;

c ¼ 5:20650 ð3Þ Å;

�2�0 ¼ 0:0036 ð9Þ�;
�2�1 ¼ 0:0077 ð3Þ�;
2�2 ¼ 88 ð5Þ�:

The evaluated lattice constants coincide well with the litera-

ture values, a = 3.24990 (4) Å and c = 5.20660 (6) Å at 300 K,

estimated by the Bond method (Albertsson & Abrahams,

1989).

4.2.4. Structure refinement. The structure parameters of

ZnO are refined to fit the integrated peak intensities evaluated

by application of the individual profile fitting method applying

the Voigt function as the symmetric profile model. The

enhancement factor for asymmetric reflection measurement

(Toraya et al., 1993), and a modified formula for March–

Dollase preferred-orientation correction for asymmetric

reflection (see Appendix B) have been applied. The linear

absorption coefficients were calculated by using X0h, devel-

oped by Stepanov (2005).

The optimized structure parameters are listed in Table 6.

All the parameters coincide well with the results obtained by

single-crystal methods. The March–Dollase preferred-orien-

tation parameter has been estimated at r = 1.055 (4), which

means that the c axis of the crystallites has a slight tendency to

orient parallel to the specimen face, which is reasonable

because it is known that crystallites of ZnO are usually elon-

gated along the c axis.

The observed and calculated values of the structure factors

are shown in Fig. 12. The slight systematic deviation may be

attributed to the change in electron charge density from the

neutral atoms assumed for the applied atomic scattering

factors.

5. Conclusion

A convenient method to symmetrize the diffraction peak

profiles measured with a high-resolution powder diffract-

ometer has been developed. Application of the symmetriza-

tion procedure has following advantages. (i) The integrated

intensities of the peaks can be extracted by a simple curve

fitting method with a symmetric profile function if the intrinsic

diffraction peak profiles of the sample are symmetric. (ii) The

observed peak position unambiguously corresponds to the

calibrated peak wavelength, while it can be affected by

broadening effects in the asymmetric case. (iii) Intrinsic

asymmetry in diffraction peak profiles, which may be caused
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by stacking faults for example, can properly be extracted from

the experimental data.

APPENDIX A
Evaluation of average crystallite size from Voigtian
profile parameters

The normalized Lorentzian and Gaussian functions are given

by

fLðx; �LÞ ¼ ð1=��LÞ½1þ ðx=�LÞ2��1 ð35Þ
and

fGðx; �GÞ ¼ ð1=�1=2�GÞ exp½�x2=�2
G�; ð36Þ

the Fourier transforms of which are respectively given by

FLð�; �LÞ ¼ expð�2�j�j�LÞ ð37Þ
and

FGð�; �GÞ ¼ expð��2�2�2
GÞ: ð38Þ

The Fourier initial slope of the Voigtian profile AVoigt

specified by the widths of the Lorentzian and Gaussian

components, �L and �G, is immediately given by

AVoigt ¼ 2��L: ð39Þ
The integral breadth BVoight of the Voigtian profile is exactly

given by

B�1
Voigt ¼

R1
�1

FLð�; �LÞFGð�; �GÞ d�

¼ ð1=�1=2�GÞ expð�2
L=�

2
GÞ erfcð�L=�GÞ; ð40Þ

where erfc(x) is the complementary error function defined by

erfcðxÞ ¼ ð2=�1=2Þ R1
x

expð�t2Þ dt: ð41Þ

When the crystallites have spherical shape, the area-

weighted average diameter hDiA � hD3i=hD2i is related to the

Fourier initial slope of the peak profile on the d* scale by

hDiA ¼ ð3=2ÞA�1
Voigt; ð42Þ

and the volume-weighted average diameter

hDiV � hD4i=hD3i is related to the integral breadth as follows

(Ida, Shimazaki et al., 2003):

hDiV ¼ ð4=3ÞB�1
Voigt: ð43Þ

APPENDIX B
Modification of the March–Dollase correction for
asymmetric reflection

The pole-figure profile of the March–Dollase model (Dollase,

1986) is given by

pð�Þ ¼ ð2�Þ�1ðr2 cos2 �þ r�1 sin2 �Þ�3=2: ð44Þ
Since the scattering vector is parallel to the face normal

direction in flat-plate symmetric reflection measurements, the

preferred-orientation factor for a given reciprocal-lattice

vector at the angle � from the axis of symmetry is equivalent

to the pole-figure profile.

However, the direction of the scattering vector is generally

deviated by � � |�i � �| from the face normal in asymmetric

reflection measurements, where �i is the incident glancing

angle and � is the Bragg angle. Therefore, the preferred-

orientation factor should be evaluated by

Pð�; �Þ ¼ R2�
0

p½arccosðsin � sin � cos ’þ cos� cos �Þ� d’

¼ ��1
R�
0

½r�1 þ ðr2 � r�1Þðsin � sin � cos ’

þ cos � cos �Þ2��3=2 d’: ð45Þ
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