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A method to remove the effects of instrumental aberrations from the whole

powder diffraction pattern measured with a high-resolution synchrotron powder

diffractometer is presented. Two types of asymmetry in the peak pro®les caused

by (i) the axial-divergence aberration of the diffractometer (diffractometer

aberration) and (ii) the aberration of the monochromator and focusing optics on

the beamline (beamline aberration) are both taken into account. The method is

based on the whole-pattern deconvolution by Fourier technique combined with

the abscissa-scale transformation appropriate for each instrumental aberration.

The experimental powder diffraction data of LaB6 (NIST SRM660) measured

on beamline BL-4B2 at the Photon Factory in Tsukuba have been analysed by

the method. The formula of the scale transformation for the diffractometer

aberration has a priori been derived from the instrumental function with

geometric parameters of the optics. The strongly deformed experimental peak

pro®les at low diffraction angles have been transformed to sharp peak pro®les

with less asymmetry by the deconvolution of the diffractometer aberration. The

peak pro®les obtained by the deconvolution of the diffractometer aberration

were modelled by an asymmetric model pro®le function synthesized by the

convolution of the extended pseudo-Voigt function and an asymmetric

component function with an empirical asymmetry parameter, which were

linearly dependent on the diffraction angle. Fairly symmetric peak pro®les have

been obtained by further deconvolution of the empirically determined

asymmetric component of the beamline aberration.

1. Introduction

Synchrotron radiation is a very powerful tool for the purpose

of structure analysis by powder diffractometry, because the

low divergence of the source X-ray beam provides fairly high

resolution in powder diffraction data. The sharp and simple

diffraction peak pro®les of a well crystallized sample

measured with a synchrotron light source enable precise

estimation of lattice constants (Hart et al., 1990) and accurate

structure determination (Estermann & Gramlich, 1993). The

sharp instrumental function also provides improved sensitivity

in size±strain estimation by line broadening analysis (Cox,

1992).

It is strongly desired to establish the accurate formula of the

instrumental function for further improvement in the peak

pro®le analysis. Previously, we have developed a mathematical

model for the instrumental function for a high-resolution

synchrotron powder diffractometer equipped with a crystal

analyser (Ida et al., 2001). However, it has been dif®cult to

construct a model for the effects of the spectral distribution

and beam divergence of the source X-ray on the diffraction

peak pro®les, because those effects are not only affected by

many parameters concerning the monochromator and

focusing optics on a beamline at a synchrotron facility, but are

also mutually correlated in a complex manner owing to the

high coherence of the light source.

Recently, we have proposed a novel Fourier-based method

to eliminate the effects of instrumental aberrations from the

whole powder diffraction pattern measured with a conven-

tional Bragg±Brentano powder X-ray diffractometer (Ida &

Toraya, 2002). As the method is based on the analytical model

for the effects of instrumental aberrations, the whole powder

diffraction pattern can immediately be deconvoluted without

the use of any standard materials.

In this study, we have applied the Fourier-based method to

eliminate the effect of the axial-divergence aberration of a

high-resolution synchrotron diffractometer (diffractometer

aberration) from the experimental diffraction data of LaB6

powder measured on beamline BL-4B2 at the Photon Factory

in Tsukuba, and investigated the effects of the beamline optics

(beamline aberration) on the peak pro®les. We have also tried

to remove the residual asymmetric feature caused by the

beamline aberration, applying an empirical model for the

asymmetry.
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2. Diffractometer aberration

In this section, the analytical formulae necessary for elim-

inating the diffractometer aberration from the entire diffrac-

tion data are described.

2.1. Instrumental function of the diffractometer

The axial-divergence effect limited by a set of Soller slits on

the diffracted beam side is the only signi®cant aberration of a

high-resolution powder diffractometer (Ida et al., 2001). The

instrumental function for the axial-divergence aberration is

given by

!A��2�� �
��
A�ÿ1��ÿ�2�=�
A�ÿ1=2 ÿ 1�

for ÿ �
A<�2� < 0;
0 elsewhere;

8<
: �1�

with

� � �2=2; �2�
and


A � cot 2� � tan�A; �3�
for any diffraction angles 2�, where � is the full width at half-

maximum (FWHM) of the angular distribution of the axial

divergence limited by the Soller slits, and �A is the Bragg

angle at the crystal analyser.

2.2. Scale transform of the instrumental function

Even though the width of the instrumental function

!A��2�� depends on the diffraction angle 2�, an abscissa-

independent formula can be derived by applying an appro-

priate scale transform (Ida & Toraya, 2002). Here we apply the

following scale-transform function GA�2��,
� �GA�2��
� �2� sin�A ÿ cos�A ln�sin 2� tan�A � cos 2���
� cos�A; �4�

in order to satisfy the following relation (Ida et al., 2001):

��=�2� � 1=�cot 2� � tan�A� � 1=
A: �5�
When we de®ne the instrumental function wA���� for the

transformed abscissa � by

wA���� � 
A!A��2��; �6�
the abscissa-independent formula of the instrumental function

is given by

wA���� �
�ÿ1��ÿ��=��ÿ1=2 ÿ 1�

for ÿ �<��< 0;
0 elsewhere:

8<
: �7�

Therefore, the intensity data multiplied by 
A accompanied

with the transformed abscissa � are considered as a convolu-

tion with the abscissa-independent instrumental function

wA����.

2.3. Fourier transform of the instrumental function

The Fourier transform of the instrumental function wA����,

WA��� �
R1
ÿ1

wA�x� exp�2�i�x� dx; �8�

is solved directly from equation (7). The solution is given by

WA��� � ����ÿ1=2fC�2����1=2� ÿ iS�2����1=2�g
ÿ �2�i���ÿ1�1ÿ exp�ÿ2�i����; �9�

where C(x) and S(x) are the Fresnel functions de®ned by

S�x� � Rx
0

sin��t2=2� dt �10�

and

C�x� � Rx
0

cos��t2=2� dt: �11�

Reliable computer routines to evaluate Fresnel functions are

available (Press et al., 1986).

3. Method of data processing

In this section, a series of actual procedures of the deconvo-

lution are presented. Further details have been described

elsewhere (Ida & Toraya, 2002).

3.1. Scale transform of data

Since the polarization factor can be neglected in synchro-

tron diffractometry, only the corrections for the angular

velocity and powder diffraction intensity factors (Lipson &

Langford, 1999) given by

fcorr�2�� � 1= sin � sin 2� �12�
are taken into account.

First, the following scale transforms for the diffraction angle

f2�mg, intensity fSmg and error data f�Smg (m = 0, . . ., Mÿ 1)

are applied:

�m ÿGA�2�m�; �13�

sm ÿ Sm
A�2�m�=fcorr�2�m�; �14�

�sm ÿ�Sm
A�2�m�=fcorr�2�m�; �15�
where f�mg is the abscissa, fsmg the ordinate and f�smg the

error data.

3.2. Interpolation

N-point equidistant data are created by interpolating M-

point non-equidistant data on the transformed scale. In order

to keep the statistical properties of the data unchanged by the

interpolation, the error data are modi®ed before the inter-

polation process by the following equation:

�s0m ÿ
�2�m�1 ÿ 2�mÿ1�N

2��Mÿ1 ÿ �0�
A�2�m�
� �1=2

�sm: �16�

The equidistant data sets of abscissa fxng, ordinate fyng and

error f�yng (n = 0, . . ., N ÿ 1) are created by applying cubic

spline interpolation to the sets of f�mg, fsmg and f�s0mg.
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3.3. Deconvolution by Fourier method

As fyng is a set of equidistantly spaced data, the Fourier

transform fYkg,

Yk �
PNÿ1

0

yn exp�2�ikn=N� �k � ÿN=2; . . . ;N=2�; �17�

can be rapidly evaluated by fast Fourier transform (FFT).

The discrete Fourier transform fWkg of the instrumental

function wA�x� is calculated by

Wk � WA�k=N�x� �k � ÿN=2; . . . ;N=2�; �18�
where�x is the spacing of the data fyng, that is,�x= xn+1ÿ xn.

Periodicities of Yk = YN+k and Wk = WN+k are assumed.

According to the convolution theorem, the deconvoluted

data fzng are given by

zn � Nÿ1
PNÿ1

k�0

�Yk=Wk� exp�ÿ2�ikn=N�; �19�

which are also calculated by FFT method.

3.4. Error estimation by Fourier method

The errors f�zng attached to the deconvoluted data fzng are

modelled by the reciprocal of the square root of the correla-

tion between the reciprocal of the variance in the source data

and the squared instrumental function (Ida & Toraya, 2002),

which are evaluated by the following equations:

�zn � Nÿ1
PNÿ1

k�0

V
�ÿ2�
k �W�2�k �� exp�ÿ2�ikn=N�

� �ÿ1=2

; �20�

V
�ÿ2�
k � PNÿ1

n�0

��yn�ÿ2 exp�2�ikn=N�; �21�

W
�2�
k �

PNÿ1

n�0

w2
n exp�2�ikn=N�; �22�

wn � Nÿ1
PNÿ1

k�0

Wk exp�ÿ2�ikn=N�; �23�

where �W�2�k �� denotes the complex conjugate of W
�2�
k .

3.5. Inverse scale transformation and interpolation

In order to make comparison of the deconvoluted and

source data easier, the deconvoluted data are mapped onto

the original scale again. Intensity ftmg and error f�t0mg data

mapped onto the sampling points f�mg are created by cubic

spline interpolation from the deconvoluted intensity fzng and

error f�zng data. The mapped error data f�t0mg are corrected

by

�tm ÿ
�2�m�1 ÿ 2�mÿ1�N

2��Mÿ1 ÿ �0�
A�2�m�
� �ÿ1=2

�t0m �24�

to cancel the change in the statistical properties introduced by

the interpolation. The ®nal deconvoluted intensity fTmg and

error f�Tmg data for the diffraction angles f2�mg are calcu-

lated by the following equations:

Tm ÿ tmfcorr�2�m�=
A�2�m� �25�
and

�Tm ÿ�tmfcorr�2�m�=
A�2�m�: �26�

4. Analysis of experimental data

4.1. Experimental

The diffraction data of standard LaB6 powder [National

Institute of Standards & Technology, SRM660, a =

4.15695 (6) AÊ ] were collected with a high-resolution

synchrotron powder diffractometer, MDS (Toraya et al., 1996),

on beamline BL-4B2 at the Photon Factory (PF) in Tsukuba.

The PF storage ring stored 2.5 GeV electron beams and was

operated in multi-bunch mode. The beam radiated from a

bending magnet is used on beamline BL-4B2. The white

radiation is monochromated with an Si(111) ¯at double-

crystal monochromator and focused with a cylindrical mirror

(1000 mm in length, 62.5 mm in curvature) onto the specimen
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Figure 1
(a) The experimental peak pro®le of LaB6 111 re¯ection measured with a
synchrotron X-ray (� = 0.707 AÊ ). (b) The data given by the deconvolution
of the instrumental function of the diffractometer (open circles) and the
optimized curve (solid line). (c) The errors in the deconvoluted data
estimated by Fourier method (broken line) and difference (solid line) in
the ®tting shown in (b). (d) The data given by the deconvolution of the
asymmetry caused by beamline optics (open circles) and the optimized
curve (solid line). (e) The errors in the deconvoluted data (broken line)
and difference (solid line) for the ®tting shown in (d).
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centred at the diffractometer. Incident slits were inserted

between the focusing mirror and the specimen. The mono-

chromator, focusing mirror, incident slits and specimen were

located at distances of about 17, 18, 28 and 29 m from the

bending magnet, respectively. The use of the cylindrical

focusing mirror and the rectangular cross section restricted by

a couple of incident slits may cause asymmetric divergence

and spectral broadening of the incident beam.

The LaB6 powder was loaded into a ¯at aluminium sample

holder, which was mounted on an attachment, rotated at 1

revolution sÿ1 about the normal to the sample surface during

the measurements. The sample face was inclined by 4.885� to

the incident beam. The diffractometer was equipped with a set

of Soller slits, with an axial-divergence angle � = 1�, and a

Ge(111) crystal analyser (d111 = 3.26638 AÊ ) adjusted at �A =

6.2� for the wavelength 0.707 AÊ on the diffracted-beam side.

The incident X-ray beam was restricted to 2.5 mm in width

and 1 mm in height with a couple of incident slits.

The diffraction pattern was scanned over the angular range

9.0±37.8� (2�), with a step length of 0.004� (2�) and a counting

time of 4 s stepÿ1.

4.2. Deconvolution of the diffractometer aberration

The deconvolution by the method described in xx2 and 3

was applied to the experimental powder diffraction data. The

number of sampling points of the interpolated data was N =

32768. Figs. 1±3(a) show the experimental peak pro®les of 100,

220 and 321 re¯ections, and Figs. 1±3(b) show the data

obtained by the deconvolution of the diffractometer aberra-

tion as open circles. Note that the whole diffraction pattern

was simultaneously treated by the method, though only

restricted regions are shown in Figs. 1±3.

As shown in Figs. 1(a) and 1(b), the heavily distorted peak

pro®les at low diffraction angles are transformed to sharp and

almost symmetric pro®les by the deconvolution of the

instrumental function of the diffractometer, which indicates

that the peak pro®les at low diffraction angles are dominated

by the axial-divergence aberration of the diffractometer.

In contrast, the peak pro®les at higher diffraction angles

show signi®cant asymmetry, having longer tails on the higher-

angle side of the peak. The higher-angle peak pro®les are only

slightly changed by the deconvolution of the diffractometer

aberration, as can be seen in Figs. 2(a), 2(b), 3(a) and 3(b). The

residual asymmetry in the deconvoluted pro®les is naturally

ascribable to the beamline aberration.

4.3. Evaluation of the beamline aberration

It is dif®cult to deduce a mathematical model from the

geometry of the beamline optics for the following reasons: (i)

Figure 2
(a) The experimental peak pro®le of LaB6 220 re¯ection measured with a
synchrotron X-ray (� = 0.707 AÊ ). See the caption of Fig. 1 for (b), (c), (d)
and (e).

Figure 3
(a) The experimental peak pro®le of LaB6 321 re¯ection measured with a
synchrotron X-ray (� = 0.707 AÊ ). See the caption of Fig. 1 for (b), (c), (d)
and (e).
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the effects of the monochromator and focusing mirror on the

diffraction peak pro®les are affected by many geometrical

parameters of the optics; (ii) the spectral distribution and

divergence of the source X-ray beam are heavily correlated;

(iii) the wavelength, focusing condition and cross section of

the X-ray beam are frequently changed; and (iv) the char-

acteristics of the X-ray beam are slightly varied on each

injection of the electrons to the storage ring.

In this section, we analyse the asymmetry caused by the

beamline aberration in the experimental peak pro®les

extracted by the deconvolution of the diffractometer aberra-

tion. The dependence of the extracted asymmetry on the

diffraction angle is estimated by a curve-®tting method

applying an asymmetric model peak pro®le function. We use

the model function synthesized by the convolution of the

extended pseudo-Voigt function (Ida et al., 2000) with the

following exponential function as an asymmetric component:

!E��2�� �

ÿ1
E exp�ÿ�2�=
E�

for 0<�2�;
0 elsewhere:

(
�27�

The convoluted model pro®le has been calculated by applying

an ef®cient algorithm for the numerical integral (Ida, 1998; Ida

& Kimura, 1999). The extended pseudo-Voigt functions can be

considered to be virtually identical to the Voigt function

de®ned as the convolution of the Lorentzian and Gaussian

functions (Ida et al., 2000). Only the parameter 
E in the

asymmetric component function speci®es the asymmetry of

the pro®le caused by the beamline aberration.

The model pro®le function includes the peak position 2�0,

integrated intensity I, Lorentzian FWHM ÿL, Gaussian

FWHM ÿG, asymmetry parameter 
E, and constant back-

ground b as adjustable parameters. The parameters are opti-

mized by a least-squares method for the data obtained by the

deconvolution of the diffractometer aberration. The peak

pro®le analysis has been conducted for all the diffraction

peaks in the measured range, from 100 to 321 re¯ections.

Figs. 1±3(b) show the optimized asymmetric model peak

pro®les for 100, 220 and 321 re¯ections as solid curves. The

optimized pro®les are very close to the data obtained by the

deconvolution of the diffractometer aberrations (open

circles). The differences are comparable with the errors esti-

mated by the Fourier method, and no systematic behaviours

are found in the difference, as shown in Figs. 1±3(c). We can

conclude that the model applied here has been validated

within the experimental errors, even though the geometric

description of the beamline optics has not yet been estab-

lished.

The dependence of the optimized asymmetry parameter 
E
on the diffraction angle is shown in Fig. 4. The optimized

linear dependence is given by


E � a� b�2��; a � ÿ0:00093�19��; b � 0:000248 �9�:
�28�

The linear dependence on the diffraction angle 2�, rather than

tan � or 1= cos �, suggests that the asymmetry is caused by the

instrumental aberrations of the beamline optics, which are

considered to be mutually correlated effects of the spectral

distribution and divergence of the source X-ray beam.

4.4. Elimination of experimentally evaluated asymmetry

Assuming the linear dependence of the asymmetry para-

meter 
E on the diffraction angle, the residual asymmetry can

also be eliminated by the deconvolution based on the Fourier

and scale-transform methods from the whole diffraction

pattern.

We use the scale-transform function

GE�2�� � �1=b� ln j2� � a=bj �29�
in order to satisfy the relation

dGE�2��=d�2�� � 1=�a� b�2��� � 1=
E�2��: �30�
The transformed instrumental function is given by

wE�x� � exp�ÿx� for x> 0,

0 elsewhere,

�
�31�

and the Fourier transform is

WE��� �
R1
ÿ1

wE�x� exp�2�i�x� dx � 1=�1ÿ 2�i��: �32�

The actual procedures for the deconvolution of the beamline

aberration are similar to those described in x3, except that

GA�2��, 
A�2�� and WA��� are substituted by GE�2��, 
E�2��
and WE���.

The results of the deconvolution are shown as open circles

in Figs. 1±3(d). The sampling-point number of the interpolated

data was N = 16384. It has been found that sharpened and

fairly symmetrized pro®les are obtained by the deconvolution

for all the diffraction peaks.

Signi®cant peak shifts by the deconvolution are also

observed in Figs. 1±3. This indicates that the experimental

peak positions are shifted by the instrumental aberrations, and

the deconvolution automatically corrects the systematic

errors, which enables accurate determination of the intrinsic

peak positions (Ida & Kimura, 1999).
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Figure 4
The dependence of the asymmetry parameter (
E) for the beamline
aberration upon the diffraction angle (open circles). Error bars indicate
1� the standard uncertainty. The optimized linear dependence is shown
by the thin line.
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4.5. Analysis of symmetrized peak profiles

The symmetrized diffraction peak pro®les obtained by the

double deconvolutions have been analysed by a curve-®tting

method with the extended pseudo-Voigt function (Ida et al.,

2000) as a pro®le model. The model pro®le function includes

the peak position 2�0, integrated intensity I, Lorentzian

FWHM ÿL, Gaussian FWHM ÿG, and constant background b

as adjustable ®tting parameters.

The optimized values of the pro®le parameters are listed in

Table 1. All the optimized values seem to be reasonable except

that considerably larger errors are estimated as compared with

typical results of pro®le analysis for raw diffraction data.

The reliability factor RwP, de®ned by the following equa-

tion, is also listed in Table 1.

RwP �
P

m�Tm ÿ T�2�m�calc�2=��Tm�2P
m T

2
m=��Tm�2

� �1=2

; �33�

where fTmg and f�Tmg are the deconvoluted intensity data

and error data estimated by the Fourier method, respectively,

and T�2�m�calc is the intensity value calculated with the opti-

mized symmetric model function.

The optimized model pro®les for 100, 220 and 321 re¯ec-

tions are shown as solid curves in Figs. 1±3(d). The errors

estimated by the Fourier method in the symmetrized pro®les

are shown as broken lines, and the difference plots for the

symmetric model are drawn as solid lines in Figs. 1±3(e). The

differences are comparable with the estimated errors, and

show no systematic behaviour.

The dependences of the optimized Lorentzian FWHM ÿL

and Gaussian FWHM ÿG, obtained by the pro®le-®tting

method, on the diffraction angle are shown in Figs. 5 and 6.

The values and dependences of those parameters are ascrib-

able to (i) the intrinsic size and strain broadening and (ii) the

®nite resolution of the beamline optics.

Although it has been suggested that SRM660 LaB6 shows

small strain broadenings (Rasberry, 1989), quantitative

descriptions of the broadenings have not been reported. The

plots in Figs. 4 and 5 indicate that ®nite values of about 0.002±

0.005� remain at the diffraction angle 0� for both Lorentzian

and Gaussian FWHM values. As the wavelength of the X-ray

is 0.707 AÊ , those angular widths correspond to the coherence

length of about 1 mm, which is smaller than the typical particle

size of 10 mm of the LaB6 (SRM660) powder (Rasberry, 1989).

The symmetric component of the experimental pro®le should

Table 1
Optimized parameters for the symmetrized diffraction peak pro®les.

hkl 2�0 (�) I ÿL (�) ÿG (�) b RwP (%)

100 9.7615 (1) 316 (9) 0.0051 (6) 0.0049 (5) 40 (17) 4.0
110 13.8185 (1) 698 (14) 0.0055 (7) 0.0061 (5) 74 (28) 4.1
111 16.9439 (2) 357 (11) 0.0056 (10) 0.0071 (7) 41 (21) 3.5
200 19.5888 (2) 202 (8) 0.0060 (14) 0.0066 (10) 41 (18) 5.1
210 21.9257 (2) 469 (13) 0.0058 (11) 0.0078 (7) 42 (26) 5.0
211 24.0505 (2) 263 (10) 0.0075 (16) 0.0082 (11) 37 (21) 8.4
220 27.8421 (4) 112 (7) 0.0059 (29) 0.0093 (17) 18 (15) 5.7
300/221 29.5678 (2) 331 (12) 0.0066 (18) 0.0100 (11) 33 (25) 7.2
310 31.2061 (3) 235 (10) 0.0080 (18) 0.0088 (13) 35 (22) 6.1
311 32.7703 (4) 156 (8) 0.0056 (31) 0.0110 (17) 18 (19) 7.8
222 34.2707 (11) 27 (4) 0.0059 (107) 0.0127 (57) 32 (14) 14.0
320 43.5200 (9) 39 (5) 0.0083 (75) 0.0122 (49) 23 (14) 15.6
321 37.1116 (4) 201 (10) 0.0098 (26) 0.0112 (19) 27 (23) 9.0

Figure 6
The dependence of the Gaussian width (ÿG) on the diffraction angle.
Error bars indicate 1� the standard uncertainty.

Figure 5
The dependence of the Lorentzian width (ÿL) on the diffraction angle.
Error bars indicate 1� the standard uncertainty. The error bar for the 222
re¯ection (34.27�) is off the scale.
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be attributed not only to the intrinsic broadening of the

sample, but also to the ®nite resolution of the beamline optics.

The symmetric instrumental broadenings could be experi-

mentally determined for any given arrangements of the

beamline optics, if a standard material with well de®ned

intrinsic peak pro®les were available. Highly sensitive peak

pro®le analysis will be achieved by correction or further

deconvolution of the symmetric instrumental broadenings.

5. Conclusion

We have developed a deconvolution method to remove the

diffractometer aberration and the asymmetry caused by the

beamline optics from the whole powder diffraction pattern

measured with a high-resolution synchrotron diffractometer

equipped with a crystal analyser. The fairly symmetric peak

pro®les obtained by the deconvolution are well approximated

by the Voigt pro®le, and the errors in the deconvoluted data

are also reasonably estimated by a Fourier-based method. The

deconvolution method provides automatic correction of the

systematic errors in the peak position to improve the accuracy

in the lattice-parameter determination. As the elimination of

the asymmetry by the deconvolution certi®es the validity of

using symmetric model pro®le functions, the ef®ciency of

structure analysis based on the Rietveld method will be

enhanced. Highly sensitive peak pro®le analysis will immedi-

ately be achieved, if a well de®ned standard material for the

intrinsic peak pro®les is available.
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