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New measures of sharpness for symmetric powder diffraction peak profiles are
proposed. The sharpness parameter is defined through the vth-order moment
of the Fourier transform of the profile function. Analytical expressions for the
sharpness parameter for empirical model profile functions, namely the Gaussian,
logistic distribution, hyperbolic secant, Lorentzian, Voigt, Pearson VII and
pseudo-Voigt functions, and theoretical size-broadening profiles with statistical
size distribution are presented. Theoretical diffraction profiles with complicated
formulae can be approximated by empirical model functions assuming
equivalent values of the sharpness parameter. The concept of the sharpness
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1. Introduction

The main features of powder diffraction peaks are specified by
(i) the integrated intensity, (ii) the peak position, (iii) the line
width, (iv) the asymmetry and (v) the sharpness of the profile.
Only the integrated intensities of the peaks are necessary to
determine the most probable average crystallographic struc-
ture, while precise evaluation of peak positions is also
important to determine the dimensions of the unit cell, which
can be the deciding factor in identifying the crystallographic
symmetry from powder diffraction data. Since the intrinsic
line width of a diffraction peak is related to the coherence
length along the diffraction vector, it can be used as a direct
measure of the crystallinity along the corresponding crystal-
lographic direction. Asymmetry of experimental peak profiles
is usually attributed to instrumental aberrations or asymmetric
spectroscopic distribution of the source X-rays.

Hereafter, we restrict our attention to a normalized
symmetric peak profile function f(k) located at the origin, for
which the following equations hold:

J k=1, (1)

flk) = f(=k). (@)

Recently, Langford et al. (2000) have reported that the

sharpness of the intrinsic diffraction peak profile is related to

the distribution of the crystallite size, and suggested the ratio
(B/W) of the integral breadth B, given by

B =1/f(0), 3)

for the normalized peak profile function f(k), to the FWHM
W, defined by

fW/2) = f(0)/2

parameter provides a simple way to define an approximation for a theoretical
diffraction peak profile with empirical model functions.

or

W = 2f'[f(0)/2], 4)

as a measure of the sharpness of a symmetric powder
diffraction peak profile. However, it is generally difficult to
obtain an explicit formula of FWHM for a statistically
distributed size-broadening profile.

The author has previously proposed the ratio (A/B) of the
Fourier initial slope, defined by

a7 .
A= —xlirgoa / f(k) exp(2mikx) dk, (5)

—00

to the integral breadth B to be used as a measure of sharpness
(Ida et al., 2003); this approach is consistent with the simul-
taneous application of two major conventional methods for
line-broadening analysis, the Warren—Averbach (Warren,
1969) and Williamson-Hall (Williamson & Hall, 1953)
methods, and is similar to the method applied by Ungar et al.
(2001). It has also been shown that both A and B can easily be
evaluated for the log-normally distributed size-broadening
profile for a given median and logarithmic standard deviation.

Sanchez-Bajo et al. (2006) have pointed out that the use of
the parameter (A/B) may cause systematic deviation on
application of curve fitting analysis with the pseudo-Voigt
function to the size-broadening profile. It has been shown that
the pseudo-Voigt profile optimized to approximate the size-
broadening profile has less sharpness than that determined by
the same (A/B). Even though the validity of the approxima-
tion using the pseudo-Voigt profile has not yet been fully
certified, it should be worth examining other measures for the
sharpness of peak profile, which can provide a straightforward
method to define an approximation for the size-broadening
profile with empirical model profile functions.
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In this paper, the author defines another type of line-width
parameter, C,, with a tuneable parameter v through the vth-
order moment of the Fourier transform, and examines the
validity of using the ratio of the integral breadth to this width
parameter, (B/C,), as a measure of sharpness for a powder
diffraction peak profile.

2. Definition of line-width parameter

If the cumulants of a peak profile function are defined up to
the fourth order, the sharpness can be unambiguously deter-
mined by the kurtosis, which is given by the ratio of the fourth-
order cumulant to the squared second-order cumulant of the
function. The ith cumulant of a function f(k) is defined by

& T
K = él_lgdfoiln / exp(0k) f(k) dk.

When the function f(k) is assumed to be normalized for
simplicity, the zeroth cumulant is zero (k, = 0), the first-order
cumulant is identical to the mean position given by

kK, = [ kf(k)dk,
the second-order cumulant is identical to the variance given by
o= [ (k=) flk)dk,

and the third-order cumulant is identical to the third-order
central moment given by

6= [ (=) F0) d.

The skewness, which can be used as a measure of asymmetry
of peak profile, is defined as the ratio of the third-order
cumulant to the cubic standard deviation, «5/ /c;/ *. The fourth-
order cumulant of the normalized function f(k) is given by

o0
ik, = [ (k—kp)' f(k)dk — 33,
—00
and the kurtosis, which can be a measure of the sharpness of
the peak shape, is defined as /3.

However, it is well known that any moments or cumulants
of order higher than zero cannot be defined for the Lorentzian
(Cauchy distribution) function, while Lorentzian-like peak
profiles are often observed, perhaps for the following reasons:
(i) the spectroscopic profile of the characteristic X-ray natu-
rally has a Lorentzian character, (ii) the size-broadening
profile of small crystallites is likely to have a Lorentzian-like
shape (Popa & Balzar, 2002; Ida et al., 2003), and (iii) the
broadening caused by stacking faults with low mutual corre-
lation has intrinsically Lorentzian character as the result of
Fourier transform of the exponential distribution of coherent
domain size. Therefore, we should define alternative measures
of sharpness instead of the moments or cumulants for analysis
of experimental diffraction peak profiles.

Fortunately, the cumulants of the Fourier transform can be
defined for most of the peak profile functions, including the
Lorentzian function. The Fourier transform F(x) of a real
symmetric function f(k) located at the origin, defined by

Flx) = 77‘0 F(k) exp(2rikx) dk, ©)

is also real and symmetric. When the profile function f(k) is
normalized, the value of F(x) at the origin x = 0 becomes
unity, that is, F(0) = 1. Since the area of the Fourier transform
F(x) is identical to the value f(0), the integral breadth B for the
normalized function f(k) is related to the Fourier transform
F(x) by the following equation,

Bl = Ofo F(x) dx. 7

A parameter C,, which is proportional to the width of the
profile function f(k), can be defined for arbitrary order of v by
the following equations:

00 —1/v
C, = |:B S IxI"F(x) dx] 8)

—00

for v # 0, and
00 —1/v
C, = %i_r}l})[B 7{(} |x|"F(x) dx]

= exp[—B }0 F(x)In |x|dx:|. ©)]

Note that the integral breadth B can be considered as the
constant for normalization about the Fourier transform F(x),
as shown in equation (7). The parameter C, is also related to
the curvature of f(k) at the origin, by

C;> = —(B/47) f"(0). (10)

It is expected that the ratio of the integral breadth B to the
width parameters C, defined in this section, (B/C,), can be a
measure of sharpness, similarly to (A/B) or (B/W) described in
the preceding section.

3. Sharpness parameters of elementary peak profile
functions

In this section, the validity of the use of (B/C,) defined in the
preceding section as the sharpness parameter is examined
by comparing several peak profiles described by elementary
functions. Analytical solutions of (B/C,) for the Gaussian,
logistic distribution, hyperbolic secant, modified Lorentzian,
intermediate Lorentzian and Lorentzian functions are given in
Appendix A.

The profiles of the normalized elementary functions with an
integral breadth of unity are shown in Fig. 1. The sharpness
parameters (B/W), (A/B) and (B/C,) of the six peak functions
are listed in Table 1.

The ratios of the Fourier initial slope to the integral
breadth, (A/B), are zero for all the listed functions except the
Lorentzian function, while the apparent sharpness of the peak
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Figure 1

Profiles of normalized elementary peak profile functions: the Gaussian,
logistic distribution, hyperbolic secant, modified Lorentzian, intermediate
Lorentzian and Lorentzian functions.

profile shown in Fig. 1 corresponds well to the parameters
(B/W) or (B/C,) except that the modified Lorentzian function
may appear to be slightly sharper than the hyperbolic secant
function, while the parameters (B/C,) for the two functions
have the same value. It is also confirmed that the curvatures
of the hyperbolic secant and modified Lorentzian functions
coincide at the origin, in accordance with the common value of
(B/C,) for the two functions and the relation shown in
equation (10).

4. Sharpness parameters for the peak profile functions
with variable shape

4.1. Voigt function

The Voigt function is defined as the convolution of the
Gaussian and Lorentzian functions. When the integral
breadths of the component functions are given by b and by,
respectively, the convolution is expressed by

gulki b b) = [ folk =) s b)d (1)

in integral formula, or by the following equations:

gv(ks bg, by) = bg' V(' k/bg, n71 by [bg),  (12)

V(e y) = (/) [ D+ (x — 0 exp(—)dr

= Re[wofz(x + iy)], (13)

wofz(z) = exp(—z?) erfe(—iz), (14)

where wofz(z) is a scaled complex error function called the
Faddeeva function, and erfc(z) is the complementary complex
error function. Re[z] means the real part of the complex
number z. The formulae for the normalized Gaussian and
Lorentzian functions, f;(k; bg) and f (k; b;), are given in
equations (33) and (34) in Appendix A.

The Fourier initial slope Ay, the integral breadth By, and
the width parameters (C,), and (C,)y of the Voigt function
gv(k; bg, by) are given by

Table 1
Sharpness parameters for the Gaussian, logistic distribution, hyperbolic
secant, modified and intermediate Lorentzian, and Lorentzian functions.

Function B/W A/B B/C_, B/C, B/C, B/C; B/C

Gaussian 1.06447 0 0.13484 0.21138 0.26968 0.31831 0.39894

Logistic 1.13459 0 0.13770  0.22037 0.28694 0.34553 0.45016

Hyperbolic 1.19275 0 0.14019 0.26968 0.30290 0.37123 0.5
secant

Modified 1.22033 0 0.14147 0.23142 0.30680 0.375 0.5
Lorentzian

Intermediate 1.30477 0 0.14545 0.24290 0.32726 0.40529 0.55133
Lorentzian

Lorentzian 1.57080 2 0.15916 0.28073 0.39270 0.5 0.70711

Ay =2b,,

By = bg exp(=b} /wbg) [erfe(by /7' be)] !
= bg[wofz(ib, /7'/2be)] ",

(Cl);l = 77_1b52(BV —by),

(C)y' = b5 (b /2 — by By + b})'?,

while no simple expression for the FWHM is available.

The normalized Voigt profile for given value of integral
breadth B, can be calculated for any value of b /b; as
follows. A parameter defined by the following equation is
introduced,

py = by /(bg +by), 15)

so that the parameter py, in the range 0 < p, < 1 could cover
all the variable shape of the Voigt profile. The parameters bg
and b; can uniquely be determined from the parameters By,
and py by

bg = Byexplr ' o3 /(1 — py)erfc[r?py /(1 — py)], (16)

by = bgpy(l — pv)il' (17)

Then the normalized Voigt profile explicitly including the
integral breadth as an argument defined by the following
equation,

F(k; By, py) = gy(k; bg, by), (18)
can be calculated by applying equations (12), (13), (16) and
(17).

The normalized Voigt profiles with an integral breadth of
unity, By, = 1, are plotted for p, =0,0.2,0.4,...,1.0 in Fig.
2. The component widths, b and b, , for the normalized Voigt
profiles and the sharpness parameters, including the para-

meter (B/W), numerically evaluated by a bisection method,
are also listed for p, =0,0.1,0.2, ..., 1.0 in Table 2.

4.2. Pearson VII function
The Pearson VII function can be expressed as

gpr (ks Vpys ) = T 20( — 1/2) v T(IL + (k/ vy 17,
(19)
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Figure 2
Profiles of the normalized Voigt function.

for n>1/2, where yp; is a parameter proportional to the
width of the peak. The parameter p specifies the sharpness of
the peak profile of the Pearson VII function. The function
coincides with the Lorentzian function for u =1, inter-
mediate Lorentzian for 4 = 3/2 and modified Lorentzian for
pu =2, and approaches the Gaussian function for u© — oo. It
should be noted that the Pearson VII function can model
profiles sharper than the Lorentzian function for w in the
range 1/2 <pu < 1.

The integral breadth of the Pearson VII function Bp, is
related to yp, as follows:

By = 72 T(10) "' T(1 — 1/2)vp.

Then the normalized Pearson VII function explicitly including
the integral breadth as an argument is given by

Jer(k; By, ppr) = 3571 [1 + ”[F(M - 1/2)k/F(H)BP7]2} '
(20)

The sharpness parameter (B/W)p, from the FWHM of the
Pearson VII function Wp, is related to the parameter p by the
following equation:

(B/W)p, = ('2/2)(2"" — 1) T(1 — 1/2)/T ().

The parameter (A/B)p; from the Fourier initial slope Ap,
takes only three values depending on the parameter p as
follows:

0 1<p)
(A/B)p; =\ 2 (=1 ,
o (12<u<1)

which means that the Pearson VII function can model only
three types of decay in the tail of the peak profile.

The sharpness parameter for the Pearson VII function
(B/C,)p; is generally given by

B T(k—1/2 1 11"
B\ _Tk-1/2) F(,u+E>F vER |
C)y  mPT(w) |77T(w) 2\ 2
for any values of u and v in the ranges £ > 1/2 and v> — 1.
A shape parameter for the Pearson VII function defined by

Table 2
Sharpness parameters for the Voigt profile.

The integral breadths of the component function, b and b, , of the normalized
Voigt profile with an integral breadth of unity are also listed.
by B/W  A/B

pv bg B/C—I/Z B/CI/Z B/C; B/C,

0 1 0 1.06447 0 0.13484  0.26968 0.31831 0.39894
0.1 0.93302 0.10367 1.09623 0.20734 0.14003 0.29041 0.32775 0.41280
0.2 0.85881 0.21470 1.13354 0.42941 0.14480 0.31134 0.33891 0.42940
0.3 0.77648 0.33278 1.17765 0.66556 0.14898 0.33155 0.35225 0.44954
0.4 0.68517 0.45678 1.22996 0.91355 0.15242 0.34991 0.36833 0.47428
0.5 0.58420 0.58420 1.29164 1.16841 0.15507 0.36536 0.38779 0.50501
0.6 0.47354 0.71031 1.36263 1.42062 0.15693 0.36536 0.41122 0.54325
0.7 0.35441 0.82695 1.43907 1.65389 0.15811 0.38521 0.43856 0.58995
0.8 0.23049 0.92196 1.50948 1.84393 0.15877 0.38992 0.46757 0.64260
0.9 0.10907 0.98164 1.55633 1.96328 0.15908 0.39213 0.49128 0.68898
1 0 1 1.57080 2 0.15916  0.39270 0.5 0.70711

Py = p
is introduced, so that all possible shapes of the Pearson VII
function can be represented by varying the parameter pp,
within the range 0 < pp; < 2.

The sharpness parameters of the Pearson VII function for
the values pp; =0,0.2,0.4,...,2 are listed in Table 3. The
profiles of fy;(k; Bp;, pp;) for several values of pp; are shown
in Fig. 3. As shown in Fig. 3, the Pearson VII function for the
value 1/2 < p <1 corresponds to a shape sharper than the
Lorentzian profile (pp; = =1). The sharpness of the
Pearson VII function becomes infinite for u — 1/2.

4.3. Pseudo-Voigt function
The pseudo-Voigt function is given by

govl(ks Wy, ) =
(1 — n)fslk: (r/ In2)' 2 Wy /2] + nfy (k; TW,y /2),  (21)

where Wy is the FWHM of the function and 7 is the fraction
of the Lorentzian component that is called the mixing para-
meter. The formulae for the normalized Gaussian and
Lorentzian functions, fs(k; bs) and f (k; by ), are given in
equations (33) and (34) in Appendix A.

The integral breadth B, of the pseudo-Voigt function is
given by

B,y = (m/2)Wy[(rIn2)*(1 —n) + 0] 7" (22)

Then the normalized pseudo-Voigt function can be expressed
as

fpV(k; BpV’ T]) = ng(k’ WpV’ ’7)7 (23)

the values of which can be calculated for any values of the
integral breadth B, and the mixing parameter 7 by using
equation (22).

The sharpness parameters of the pseudo-Voigt profile are
given by

(B/W)yy = (1/2)[(xn2)2(1 =)+ 1],

(A/B)yy = 2n[(x1n2)"*(1 — n) + ],

396 Takashi Ida + New measures of sharpness for peak profiles
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Profiles of the normalized Pearson VII function.
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Figure 4

Profiles of the normalized pseudo-Voigt function.

(B/Cv)pv = [ﬂl/z(ln 2)1/2(1 _ n) + n]*l*l/u
X {(ln 2)(v+1)/2(1 —nI(v+1)/2] 4+ (n/2")C(v + 1)}|/v.

The sharpness parameters of the pseudo-Voigt function for
the values n=0,0.2,04,...,2 are listed in Table 4. The
profiles of the normalized pseudo-Voigt function with B, = 1
and n=0,1/3,2/3,...,5/3 are shown in Fig. 4.

It should be noted that the parameter (A/B),, has the
maximum value

27 7(In2)[(w1n2)"* — 1]7" = 2.28899
at
n=2""(rIn2)"*[(xIn2)"* —1]7" = 1.55116.

Practical use of the pseudo-Voigt function will be limited to
the range n<1.55, which corresponds to (B/W),y <2.13,
(B/Cy)py <0.72 and (B/C,),y < 1.11.

The parameter n can inversely be evaluated from the
sharpness parameters (B/W), (A/B), (B/C_, ;) and (B/C,) by
solving linear or quadratic equations, while numerical solution

Table 3
Sharpness parameters for the Pearson VII profile.

Ppr B/W A/B B/C_, B/G, B/C,, B/C, B/C,

0 oo 1.06447 0 0.13484 021138 0.26968 0.31831 0.3989%4
02 5 1.11385 0 0.13683  0.21754 0.28134 0.33646 0.43234
04 25 1.17942 0 0.13963  0.22600 0.29696 0.36025 0.47451
0.6 1.66667 1.26821 0 0.14370  0.23789 0.31838 0.39219 0.52928
08 1.25 1.39177 0 0.14977 0.25505 0.34854 0.43635 0.60301
1 1 1.57080 2 0.15916  0.28073 0.39270 0.5 0.70711
12 0.83333 1.84654 oo  0.17448 0.32136 0.46128 0.59763 0.86431
14 071429 231525 oo 020181 0.39185 0.57852 0.76301 1.12769
1.6 0.625 326558 oo 025935 0.53693 0.81719 1.09747 1.65640
1.8 0.55556 6.14089 oo  0.43801 0.98000 1.54089 2.10760 3.24623
2 05 00 00 00 00 o0 00 o]
Table 4

Sharpness parameters for the pseudo-Voigt profile.

U B/W A/B B/C_,, B/ B/C_, B/C B/C,

0 1.06447  0.00000 0.13484 021138 0.26968  0.31831 0.39894
02 113782 055221 0.13932  0.22252 0.28771  0.34342  0.43990
0.4 122203 1.02832 0.14402 0.23484 0.30832  0.37276  0.48852
0.6 131970 1.42832 0.14891  0.24850 0.33211  0.40746  0.54701
0.8 143434 1.75221 0.15397 0.26373 0.35988  0.44911 0.61841
1 1.57080  2.00000 0.15916  0.28073 0.39270  0.50000 0.70711
12 1.73594 217168 0.16437 029977 0.43210 0.56348 0.81962
1.4 193989 226726 0.16945  0.32107 0.48027  0.64475  0.96600
1.6 219814 228672 0.17415 0.34478 054050  0.75219  1.16250
1.8 253572 223009 0.17802 037075 0.61793  0.90030  1.43698
2 2.99579  2.09734 0.18035 039803 0.72111  1.11612  1.84099

4.4. Sharpness parameters for size-broadening profile

4.4.1. Spherical crystallite. When the shape of a crystallite
is spherical, spheroidal or ellipsoidal, the size-broadening
diffraction profile from the crystallite becomes identical to
that of a sphere, according to the theory of Stokes & Wilson
(1942). The normalized size-broadening profile is given by the
following formula:

v ) 3Ds7[1 — 257 sins + 4572 sin’(s/2)]  (k # 0),
fs(k; D) = 3D/4 (k =0),
(24)
s = 27kD, (25)

where D is the effective dimension along the diffraction
vector, which is identical to the diameter in the case of a
spherical crystallite (Langford & Wilson, 1978). When the
angles between the diffraction vector and the three principal
axes of an ellipsoidal crystallite are o, o, and a5, the effective
dimension is given by

D = (D7?cos’ a, + D32 cos’ a, + D32 cos* ;) /%, (26)

where the diameters along the principal directions are
assumed to be D,, D, and D; (Popa, 2005). When the
diffraction vector deviates by an angle of « from the unique
axis of a spheroid, the effective dimension is given by

of higher-order equations is required in the case of a general D =( Dﬁz cos® o + D77 sin? )2, 27)
value of v.
J. Appl. Cryst. (2008). 41, 393-401 Takashi Ida + New measures of sharpness for peak profiles 397
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where D) and D, are the diameters along the axial and
equatorial directions, respectively.

The Fourier transform of the size-broadening profile of a
spherical crystallite is given by

1—3x|/2D + |x]*/2D* (|x| < D),

Fsx D) = D < ).

(28)

The integral breadth By of the function fy(k; D) is given by
Bs = (4/3)D7",
and the sharpness parameters are given by

(A/B)s = 9/8 = 1.125,

(B/C,)s= (4/3){8/[(v + (v + 2w+ 4]}
for v #£ 0, and
(B/CO)S: (4/3) exp(—=7/4) = 0.231699.

4.4.2. Lognormal size distribution of spherical crystallites.
The density function of a lognormal distribution with a median
m and logarithmic standard deviation w is given by

fin(D; m, ©) = [21)"? D] exp{~[In(D/m)I’ 2"} (29)

The normalized formula of diffraction intensity profiles from
log-normally size-distributed crystallites is given by

Fou (ki m. ) = / fy(k: D) fix[D: m exp(3?). w]dD, (30)

which is abbreviated as the ‘SLN’ profile.
The Fourier transform of the SLN profile (Ungar et al.,
2001) is given by

Fg n(xim, ®) = (1/2)erfe{[In(|x|/m) — 30*]/2"*w)}
— (31x]/4m) exp(—2.5w")erfe{[In(|x|/m) — 20°] /2" w}
+ (|x]?/4m?) exp(—4.5a)2)erfc{[ln(|x|/m)]/21/2a)}. (31)

The integral breadth Bgy of the function fg (k; m, @) is
given by

By n = (4/3)m™" exp(—3.57),
and the sharpness parameters are given by

(A/B)sin = (A/B)g exp(a)z),

(B/CV)SLN: (B/CU)SGXP[(I) + 1)6()2/2]

4.4.3. Approximation with the pseudo-Voigt function to
the SLN profile. When the size distribution of crystallites is
modelled by the log-normal distribution, the line-width and
the sharpness parameters of the size-broadening profile
uniquely determine all of the characteristics of the statistical
distribution.

Sanchez-Bajo et al. (2006) have proposed the use of the
pseudo-Voigt function instead of the theoretical size-broad-
ening profile in least-squares curve fitting analysis. The mixing
parameter 7 of the pseudo-Voigt function has been empirically

Table 5
Logarithmic standard deviation w of the SLN profiles with integral
breadth B and sharpness parameter (B/C,) equivalent to the pseudo-
Voigt function, with the mixing parameter n = 0.8, 1, 1.2, varied on the
order v.

v w (n=0.8) wm=1) wm=12)
-2 0.66566 0.75853 0.81100
-32 0.60068 0.70675 0.77651
-1 0.55837 0.67039 0.75425
—12 0.52936 0.64238 0.73587
0 0.50886 0.61961 0.71772
1/2 0.49410 0.60043 0.69857
1 0.48332 0.58389 0.67857
312 0.47532 0.56935 0.65839
2 0.46927 0.55639 0.63876

related to the logarithmic standard deviation parameter w of
the log-normal distribution.

As has been previously reported (Ida ef al., 2003), the SLN
profile will become close to the Lorentzian profile when the
value of the logarithmic standard deviation w in determining
the sharpness of the profile has certain values corresponding
to similar sharpness as the Lorentzian function.

Sénchez-Bajo et al. (2006) have suggested that the SLN
profile with the least-squares deviation from the Lorentzian
function corresponds to w = 0.70, while the values of w
evaluated through sharpness parameters equivalent to the
Lorentzian function are given by

o = [21n(4/3)]"* = 0.758528
for the same (A/B),
o = [(7/2) + 21n(3/8) — 2y]"*= 0.619605

for the same (B/C,), and

w= {L |:1n§+11n—(v+4)1”(v+3)]}1/2
8 v 8

for the same (B/C,) with v # 0. The above relations clearly
show that the parameters for the ‘Lorentzian-like’ SLN profile
depend on the definition of the sharpness parameter.

The variation of w for ‘Lorentzian-like’ profiles evaluated
through (B/C,) is listed in the third column of Table 5, where
the values for the equal sharpness to the pseudo-Voigt func-
tion with n = 0.8 and n = 1.2 are also listed in the second and
fourth columns. The values of w corresponding to v = -2, —1
are numerically evaluated as the limit values for v — —2, —1.

Fig. 5 compares the pseudo-Voigt functions for the mixing
parameters (a) n = 0.8, (b) n = 1 (Lorentzian) and (¢) n = 1.2
with the SLN profiles that have the equivalent integral
breadth and sharpness parameters for v = —3/2, —1/2,1/2,
3/2. The difference curves show the tendency that the devia-
tion in the tail and peak regions is greater for smaller and
larger values of v, respectively. It is suggested that a value
around v = —1/2 gives the minimum deviation on the
approximation of the SLN profile by the pseudo-Voigt func-
tion through the sharpness parameter (B/C,), and the uncer-
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Figure 5

Comparison of the pseudo Voigt functions for the mixing parameters (a)
n=0.8, (b) n =1 (Lorentzian) and (c) n = 1.2 with the SLN profile
functions with equivalent integral breadth and sharpness parameters
(B/C,) forv=—3/2,—1/2,1/2,3/2. Difference curves are plotted in the
lower part of each panel.

Table 6

Profile parameters of the SLN profile function optimized by a least-
squares method to fit the pseudo-Voigt functions defined in different data
ranges.

Range (I), |x| <2B Range (II), |x| <4B Range (III), |x| < 6B
n=08n=1 n=12 n=08n=1 n=12n=08 n=1 n=12
b, 0.0078 0.0070 —0.0008 0.0022 0.0020 0.0007 0.0010 0.0009 0.0004

S 0943 0944 0996 0971 0973 0988 0.980 0.982 0.990
m 0.695 0405  0.181 0578 0326 0.192 0.534 0.298 0.180
o 0449 0599 0760 0501 0.646 0.750 0.523 0.665 0.755

tainty in the evaluated w will be within about £-0.1, indepen-
dent of the order v of the sharpness parameter (B/C,).

Finally, ambiguity about the least-squares-based optimiza-
tion of approximation with empirical functions for theoretical
profiles, which has been commonly adopted in the literature
treating this subject (Thompson et al., 1987; 1da et al., 2000;
Popa & Balzar, 2002; Sanchez-Bajo et al., 2006), is briefly
discussed. Table 6 lists the results of least-squares fitting by the
SLN profile to the pseudo-Voigt functions with the integral
breadth of unity (B=1) and the mixing parameters
n = 0.8, 1, 1.2. Three different data sets in the ranges |x| <2B
(I), |x| <4B (II) and |x| < 6B (III) are separately analysed. A
model function of the following form is applied:

f(x) = by + Sfin(x; m, ), (32)

where the constant background b, integrated intensity S,
median diameter m and logarithmic standard deviation w in
the SLN profile function are treated as the adjustable para-
meters. As is listed in Table 6, the optimized values of the
parameters vary considerably in the data range for the
analysis. Furthermore, it is expected that the results of the
least-squares fitting will also be affected by the background
level and assumed statistics, when it is applied to experimen-
tally obtained diffraction peak intensity profiles.

The concept of approximation through the sharpness
parameter (B/C,) seems favourable because of the unam-
biguous definition of formulae and the portability to various
model function systems, including theoretical size-broadening
profiles with statistical distribution.

5. Conclusion

A new definition of the sharpness parameter, which is defined
through the vth-order moment of the Fourier transform, for
symmetric peak profile functions has been examined. Analy-
tical expressions for the sharpness parameter for empirical
model profile functions, namely the Gaussian, logistic distri-
bution, hyperbolic secant, Lorentzian, Voigt, Pearson VII
and pseudo-Voigt functions, and theoretical size-broadening
profiles with statistical size distribution have been derived.
Theoretical diffraction profiles of spherical crystallites with
log-normal size distribution can be approximated by the
pseudo-Voigt function with equivalent values of the sharpness
parameter for v = —1/2. The concept of the sharpness para-
meter will provide a simple way to define an approximation
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for theoretical diffraction peak profile by empirical model
functions.

APPENDIX A
Analytical expressions of elementary peak profile
functions

A1. Gaussian function

The normalized Gaussian function with integral breadth B
is given by

fa(k; Bg) = Bg' exp(—7k’/Bg,). (33)

The sharpness parameters from the FWHM W and Fourier
initial slope A of the Gaussian function are given by

(B/W)g =27"'7"2(In2)""* = 1.06447,

(A/B); = 0.

The sharpness parameters (B/C,)s of the Gaussian function
are given by

(B/C,) = = 21w+ 1)/2]}",

for v # 0, where I'(x) is the gamma-function defined by

C(x) = }otx’1 exp(—t) dt. (34)
0

The values for v =—1/2,0,1/2,1, 2 are given by
(B/C_y )6 = /[T (1/4)] = 0.134838,

(B/Cy)g =27 ' exp(—y/2) = 0.211375,
(B/Cy )6 = > /*[T(3/4)F = 0.269676,
(B/C))g = =0.318310,

(B/Cy) = (2m) "% = 0.398942,

where y is the Euler constant, defined by

n—oo \ ;i
]

y = lim (2:]'1 —In n) = 0.57721566490153286060 . . . ,
=1

A2. Logistic distribution function

The logistic distribution function is equivalent to the square
of the hyperbolic secant function defined by

sech(x) = 2[exp(x) + exp(—x)] .

The normalized formula for the logistic distribution function
with the integral breadth Bgy, is given by

fsm(k; Bgpp) = BgIJIZSeChZ(Zk/BSHZ)- (35)

The sharpness parameters (B/W) and (A/B) for the function
are given by

(B/W)sip = [In(2"2 + 1)] "= 113459,

(A/B)SHZ =0.

Although a simple expression of (B/C,) for the general value
of v is not always available, some analytical solutions for
integer or half-integer values of v are as follows:

3 1\
(B/C_ip)sm = 7| & ) =0.137697,

2 4 % tlnt
(B/Cy)sp = —5 exp dr | = 0.220372,
T 0

) sinh ¢
9 5 1\7T
(B/C)sm = = |:§<2 ) 2>:| = 0.28694,

(B/C)s, = 287 *2(3) = 0.345528,

(B/Cy)sip, = 2"*" = 0.450158,

where £(s) is the Riemann Zeta function defined by

() =3 k.

k=1

and ¢(s, v) is the Hurwitz Zeta function (generalized Riemann
Zeta function) defined by

o) = Y+

k=0

A3. Hyperbolic secant function

The normalized hyperbolic secant function with the integral
breadth Bgy is given by

fsu(k; Bsyy) = By sech (k/Bgy). (36)
The sharpness parameters for the function are given by

(B/W)gy = m/[21n(2 + 3'%)] = 1.19275,

(A/B)su =0,

1 /11 1 3\1°
(B/C_1/2)5H=Z t\51) 553 = 0.140194,

(B/Cp)su = n! eXP|:)/ —%iw

1 31 3 31\
(B/Cp)su = Tom [;(2,4> - ;(2,4” = 0.302896,

(B/C))syy = 4G = 0.371227,

:| = 0.228473,

(B/Cysu = 27 =05,

where G is the Catalan constant given by
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G =Y (-1)@k+1)"" =0.915965594177 . . .,

k=0

A4. Modified and intermediate Lorentzian functions

The modified and intermediate Lorentzian functions are
special cases of the Pearson VII function (Young & Wiles,
1982).

The normalized formula of the modified Lorentzian func-
tion for integral breadth B, is given by

fur(ks By ) = Byt (1 + 2K /4By ). (37)

The sharpness parameters for the modified Lorentzian func-
tion are

(B/ W)y = (/4)(2"* —1)7* = 1.22033,

(A/B)ML =0,

(B/Cw = (1/2){7 T (w/2 + 2)T[(w + 1)/21}",
for v #£ 0, and
(B/Co). = (1/4) exp(1/2 — y) = 0.231423.

The normalized formula of the intermediate Lorentzian
function for integral breadth By is given by

fulk; By) = By (1 + 4k*/B} ) 2. (38)

The sharpness parameters for the intermediate Lorentzian
function are given by

B/W), = (¥ — 1) =1.30477,
(A/B)IL =0,
(B/Cy. =2 {2 T[(v +3)/2] T + 1)/21}

for v #£ 0, and
(B/Cy)y. =2 ' exp(1 — y) = 0.242903,

A5. Lorentzian function

The normalized Lorentzian function with integral breadth
B, is given by

fulk; By) = B{'(1 + °K*/B}) ™" (39)

The sharpness parameters from the FWHM and Fourier initial
slope are given by

(B/W), = /2 = 1.5708,

(A/B), =2.

The sharpness parameters (B/C,), of the Lorentzian function
are given for general values of v by

(B/C) =27"T(w+ 1],
for v # 0; the values for v=—1/2,0,1/2,1,2 are
(B/C_y ) =2"'n! =0.159155,

(B/C,), =2 exp(—y) = 0.28073,
(B/Cyp) =87 = 0.392699,
(B/C)).=2""=0.5,

(B/C,), =27"* =0.707107.
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