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An efficient method for calculating asymmetric diffraction peak profiles
Takashi Idaa)
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An efficient method for evaluating asymmetric diffraction peak profile functions based on the
convolution of the Lorentzian or Gaussian function with any asymmetric window function is
proposed. When this method is applied to approximate the convolution with the Howard’s window
function @J. Appl. Crystallogr.15, 615 ~1982!#, only a few terms of numerical integration give
satisfactory results, even if the asymmetry is very strong. ©1998 American Institute of Physics.
@S0034-6748~98!00611-X#
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The peak profiles in angular dispersive powder diffra
tometry generally become asymmetric, which is main
caused by the effect of vertical~axial! divergence.1 The
asymmetric profile function can be expressed by the follo
ing standard formula of convolution:

P~y!5E f ~y2z!w~z!dz, ~1!

wherey is the deviation of the horizontal angle of the rece
ing slit from the diffraction angle,f (x) is a symmetric profile
function, andw(z) is an asymmetric window function. Th
Voigt,2 pseudo-Voigt,3,4 or Pearson VII~Ref. 5! function has
been used asf (x), and some formulas forw(z) have also
been proposed.1,6,7 Although the convolution can be evalu
ated by any numerical integration, a rapid method with
fixed formula is strongly desired for application to refin
ment programs.

In Howard’s model1 the asymmetric window function is
expressed by

wH~z!5
uzu21/2

2Auzminu
for zmin,z,0, ~2!

andwH(z)50, elsewhere. Here,zmin is the parameter which
specifies the degree of asymmetry. The main feature of
window function proposed by van Laar and Yelon6 is similar
to this model.

Howard has proposed a removal of the singularity fro
the integrand in Eq.~1! by the substitution

z[2u2, ~3!

which gives the following formula:

PH~y!5
1

Auzminu
E

0

Auzminu
f ~y1u2!du, ~4!

and utilizing Simpson’s rule to evaluate the integral, wh
van Laar and Yelon and Fingeret al. have suggested direc
application of Gauss–Legendre quadrature procedure to
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~1!.6,8 However, it seems difficult to achieve good approx
mation with those formulas, when the asymmetry is stro
and f (x) has a narrow profile. This note is intended to pr
pose useful formulas to approximate asymmetrized Lore
ian and Gaussian profile functions.

First, let us examine the case wheref (x) is expressed by
the following Lorentzian function:

f L~x!5
1

pgL
F11S x

gL
D 2G21

, ~5!

wheregL specifies the width of the peak. Instead of Eq.~3!,
the author proposes utilizing the following substitution of t
variable:

z[y1gL tanS 2jm2arctan
y

gL
D

⇔j[S arctan
y2z

gL
2arctan

y

gL
D 1/m

, ~6!

in order to reduce the peak-like behavior of the integra
nearz;y, as well as to remove the singularity atz→0. The
parameterm should be chosen in correspondence with
degree of the singularity ofw(z) at z→0, for example,m
52 will be appropriate forwH(z) given by Eq. ~2!. The
convolution of f L(x) with any window functionw(x) is
given by

PL~y!5E
a

b

f L~y2z!w~z!dz

5E
aL

bL mjm21

p
wFy1gL tanS 2jm2arctan

y

gL
D Gdj,

~7!

where

aL[S arctan
y2b

gL
2arctan

y

gL
D 1/m

, ~8!

bL[S arctan
y2a

gL
2arctan

y

gL
D 1/m

. ~9!
7 © 1998 American Institute of Physics
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When we define the integrand of the second equation of
~7! asg(j), the approximated formula is given by

E
a

b

g~j!dj;~b2a!(
i 51

N

cig„a1~b2a!xi…, ~10!

where ci and xi are the Gauss–Legendre weights and
scissa associated with thei th point.9

Now, the convolution of the Lorentzian functionf L(x)
given by Eq.~5! with the Howard’s window functionwH(x)
given by Eq.~2! is examined. Although Howard has su
gested applying numerical integration for evaluating
convolution,1 the analytical solution of the convolution i
certainly available in this case, which is given by

PLH~y!5
Av1u

4&pgLzv
F ln

z21&Av2uz1v

z22&Av2uz1v

1
2

v1u S arctan
z22v

&Av1uz
1

p

2 D G , ~11!

where z[Auzminu/gL, u[y/gL , and v[A11u2. Figure 1
compares the exact solution with the approximate functi
based on Eqs.~7!–~10! and the methods of Howard1 and
Finger et al.,8 for the casezmin525 and gL51. Here, the
number of terms of numerical integration is set to beN53 to
clarify the difference. The approximation by Eqs.~7!–~10! is
almost indistinguishable from the exact solution with on
three terms, while the methods by Howard and Fingeret al.
give rather poor results with vibrational structures, which
particularly unfavorable for application to fitting experime
tal data.

Next, let us examine the case wheref (x) has the follow-
ing form of a Gaussian function:

f G~x!5
1

ApgG

expF2S x

gG
D 2G . ~12!

In this case, we can apply the following substitution:

FIG. 1. Approximation of the convolution of the Lorentzian functionf L(x)
with the Howard’s window functionwH(x) for the casezmin525 andgL

51. Solid circles are the exact values calculated by Eq.~11!, and the lines
are the approximations by three-term numerical integrations. Solid lin
calculated by Eqs.~7!–~10!, while dashed and dotted lines are calculated
the methods of Howard and Fingeret al., respectively.
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z[y1gG erf21F2hm2erfS y

gG
D G

⇔h[FerfS y2z

gG
D2erfS y

gG
D G1/m

, ~13!

where erf(x) is the error function defined by

erf~x![
2

Ap
E

0

x

exp@2t2#dt, ~14!

and erf21(x) is the inverse function of erf(x). The asymme-
trized profile function is given by

PG~y!5E
a

b

f G~y2z!w~z!dz

5E
aG

bG mhm21

2

3wH y1gG erf21F2hm2erfS y

gL
D G J dh, ~15!

where

aG[FerfS y2b

gG
D2erfS y

gG
D G1/m

, ~16!

bG[FerfS y2a

gG
D2erfS y

gG
D G1/m

. ~17!

The approximated formula is given by Eq.~10!, again.
The results of various methods for evaluating the con

lution of f G(x) with wH(x) for the casezmin525 andgG

51 are shown in Fig. 2. Since the analytical formula of t
convolution is not available, the exact solution is evalua
by increasing the terms of the numerical integral. As
shown in Fig. 2, the approximation based on the formu
given by Eqs.~15!–~17! is clearly better than the methods b
Howard and Fingeret al., again.

is

FIG. 2. Approximation of the convolution of the Gaussian functionf G(x)
with the Howard’s window functionwH(x) for the casezmin525 andgG

51. Solid circles are the exact values obtained by increasing the term
the numerical integration, and the lines are the approximations by three-
numerical integrations. Solid line is calculated by Eqs.~15!–~17! and ~10!,
while dashed and dotted lines are calculated by the methods of Howard
Fingeret al., respectively.
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Since the pseudo-Voigt function is a sum of Lorentzi
and Gaussian functions,3,4 the asymmetrized pseudo-Voig
function is simply given by the sum of the asymmetriz
Lorentzian and Gaussian functions. Furthermore, it w
be easy to construct the formula of the substitution l
Eq. ~6! or Eq.~13! for any f (x), when the primitive function
F(x)[* f (x)dx and its inverse functionF21(x) are
both available. Even ifF(x) or F21(x) is not available, it is
worth trying the substitution given by Eq.~6! or Eq. ~13!,
when f (x) is approximated by a Lorentzian or Gaussi
function.
l
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