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An efficient method for calculating asymmetric diffraction peak profiles
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An efficient method for evaluating asymmetric diffraction peak profile functions based on the
convolution of the Lorentzian or Gaussian function with any asymmetric window function is
proposed. When this method is applied to approximate the convolution with the Howard’s window
function [J. Appl. Crystallogr.15, 615 (1982], only a few terms of numerical integration give
satisfactory results, even if the asymmetry is very strong.198 American Institute of Physics.
[S0034-67488)00611-X

The peak profiles in angular dispersive powder diffrac-(1).%8 However, it seems difficult to achieve good approxi-
tometry generally become asymmetric, which is mainlymation with those formulas, when the asymmetry is strong
caused by the effect of verticghxial) divergencé. The andf(x) has a narrow profile. This note is intended to pro-
asymmetric profile function can be expressed by the followpose useful formulas to approximate asymmetrized Lorentz-

ing standard formula of convolution: ian and Gaussian profile functions.
First, let us examine the case whé(&) is expressed by
p(y):f f(y—z)w(z)dz, (1)  the following Lorentzian function:
1 X 21-1
wherey is the deviation of the horizontal angle of the receiv- fLx)= P 1+ (7) , (5)
L L

ing slit from the diffraction anglef(x) is a symmetric profile
function, andw(z) is an asymmetric window function. The wherey, specifies the width of the peak. Instead of E),
Voigt,? pseudo-Voigf or Pearson VI(Ref. § function has  the author proposes utilizing the following substitution of the
been used a$(x), and some formulas fow(z) have also variable:
been proposet®’ Although the convolution can be evalu-
ated by any numerical integration, a rapid method with a 7=y+ 7y, ta —§m—arctanl
fixed formula is strongly desired for application to refine- YL
ment programs.

In Howard’s modéel the asymmetric window function is o=
expressed by

1/m

: (6)

y—-z y
arctan——-—arctan—
YL YL

7|12 in order to reduce the peak-like behavior of the integrand
for zy;<z<0, (2) nearz~Yy, as well as to remove the singularityat-0. The
V| Zeminl parametem should be chosen in correspondence with the

andwy(2) =0, elsewhere. Here,,;, is the parameter which degree of the singularity of(z) at z—0, for examplem

specifies the degree of asymmetry. The main feature of tha 2 Will be appropriate fowy(2) given by Eq.(2). The
window function proposed by van Laar and Yeidmsimilar ~ convolution of f, (x) with any window functionw(x) is

wy(2)=

to this model. given by
Howard has proposed a removal of the singularity from b
the integrand in Eq(1) by the substitution PL(y):J’ fL(y—2z)w(2)dz
a
— _ 12
Z=—U", (3) BL mgm—l " y
which gives the following formula: = LL —Wyty tan —¢ —arctanz dé,
1 Zminl (7)
Ph( )=—J f(y+u®du, 4
HOY V|Zminl 70 y where
and utilizing Simpson’s rule to evaluate the integral, while y— m
van Laar and Yelon and Finget al. have suggested direct @ =| arctan ” —arctany—L , ®
application of Gauss—Legendre quadrature procedure to Eq. /
—a 1/m
BL= arctany —arctanl 9
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FIG. 1. Approximation of the convolution of the Lorentzian functiiyrfx) FIG. 2. Approximation of the convolution of the Gaussian functigyix)
with the Howard’s window functiorw,(x) for the casez,,,=—5 andy_ with the Howard’s window functiow(x) for the casezy,,=—5 andyg
=1. Solid circles are the exact values calculated by Ed), and the lines  =1. Solid circles are the exact values obtained by increasing the terms of

are the approximations by three-term numerical integrations. Solid line ighe numerical integration, and the lines are the approximations by three-term

calculated by Eq<7)—(10), while dashed and dotted lines are calculated by numerical integrations. Solid line is calculated by EG$)—(17) and (10),

the methods of Howard and Finget al., respectively. while dashed and dotted lines are calculated by the methods of Howard and
Fingeret al, respectively.

When we define the integrand of the second equation of Eq.

(7) asg(£), the approximated formula is given by 2=yt yg erfl| — nm—erf( l)
8 N YG
f 9(§)dé~(B—) 2 cigla+t(B—a)x), (10
a i=1 y—z y 1m
wherec; and x; are the Gauss—Legendre weights and ab- 7= erf( Ys —erf(%) ' (13
scissa associated with thth point® : . i
Now, the convolution of the Lorentzian functidi(x) where erik) is the error function defined by
given by Eq.(5) with the Howard'’s window functionvy(x) 2 [(x
given by Eq.(2) is examined. Although Howard has sug- erf(x)z\/—_ exf —t?]dt, (14
gested applying numerical integration for evaluating the ™ /0
convolution? the analytical solution of the convolution is and erf(x) is the inverse function of erff. The asymme-
certainly available in this case, which is given by trized profile function is given by
2 — b
APV CRITINN I Gl Cll Po(y)= | foly- 2wz
W2y Lv ’—V2v—ui+v a
B m—1
L2 N S B (11) :f Gmnz
— | arctan———+ = | |, a
v+u V2uv+ul 2 ¢

— nm—erf(l”]dn, (15

+ v erf 1
YT Y6 "

where (= \|zminll v, u=yly,, andv=1+u? Figure 1 X W
compares the exact solution with the approximate functions
based on Eqs(7)—(10) and the methods of Howardand ~ where

Finger et al.® for the casez,;,=—5 and y_=1. Here, the

1/m
number of terms of numerical integration is set td\be 3 to ag= erf( u) —erf< l) , (16)
clarify the difference. The approximation by E¢#)—(10) is Ye Ye
almost indistinguishable from the exact solution with only y—a y |\ ]um
three terms, while the methods by Howard and Firegeal. Be= erf( 7_6) —erf( 7_6) (17)

give rather poor results with vibrational structures, which is
particularly unfavorable for application to fitting experimen- The approximated formula is given by EQ.0), again.

tal data. The results of various methods for evaluating the convo-
Next, let us examine the case whé(&) has the follow- lution of fg(x) with wy(x) for the casez,,;,=—5 and yg
ing form of a Gaussian function: =1 are shown in Fig. 2. Since the analytical formula of the

convolution is not available, the exact solution is evaluated
1 x \? by increasing the terms of the numerical integral. As is
N SR I shown in Fig. 2, the approximation based on the formulas
given by Eqs(15—(17) is clearly better than the methods by
In this case, we can apply the following substitution: Howard and Fingeet al,, again.

fe(X)=

12
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