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The statistical properties of X-ray intensities measured with counting systems

have been experimentally investigated. A formula of statistical variance for the

intermediately extended dead-time model is proposed and compared with the

experimentally evaluated variance obtained from repeated measurements based

on Chipman’s foil method applied to X-ray detection systems of laboratory and

synchrotron powder diffractometers. It has been found that the variance of the

observed intensities is smaller than the average of count, as has been suggested

by conventional theoretical models for counting loss. It is shown that the

statistical errors can be predicted by applying an intermediately extended dead-

time model including dead-time � and degree of extension � as fixed parameters.

1. Introduction

The weighted least-squares method is widely applied to

analysis of diffraction intensity data. The sum of the squared

deviation of each observation from the calculated value can be

treated as a maximum-likelihood estimator, where the devia-

tion is weighted by the reciprocal of the known statistical error

in the measurement.

It is usually assumed that the statistical error of the X-ray

intensity measured by a counting method is identical to the

square root of the measured count, which can be justified if the

statistical distribution of the counted pulses obeys Poisson

statistics. Independently generated signal pulses are certainly

expected to obey the Poisson distribution, which predicts that

the probability of measuring a number of pulses n during the

measurement period T is given by

PPoissonðnÞ ¼ ðn!Þ�1
ðrTÞn expð�rTÞ; ð1Þ

where r is the average rate of generated pulses. The mean

�Poisson and variance �2
Poisson of the Poisson distribution are

simply given by �Poisson ¼ �
2
Poisson ¼ rT.

However, it is not expected that the intensities measured

with a realistic counting system should strictly obey the

Poisson distribution, because they are always affected by

counting loss caused by the finite response time of a detector

and/or the electronic circuits in the detection system (Omote,

1990).

The mean and variance of the counted pulses based on the

non-extended dead-time model with a dead-time � are

approximately given by (Müler, 1974)

�non ¼ rT=ð1þ r�Þ; ð2Þ

�2
non ¼ �non=ð1þ r�Þ2; ð3Þ

while those predicted by the extended dead-time model are

given by

�ext ¼ rT expð�r�Þ; ð4Þ

�2
ext ¼ �ext½1� 2r� expð�r�Þ�: ð5Þ

The validity of the above approximate formulae has recently

been confirmed by a systematic investigation based on Monte

Carlo simulations (Ida, 2007). This study suggests that the

statistical errors of the observed count and the statistical

errors to be attached to the corrected intensity data can be

evaluated if a detection system is modelled by either the non-

extended or the extended dead-time model.

However, no reasonable formulae to predict statistical

variance for an intermediately extended dead-time model (Ida

& Iwata, 2005) have been reported, despite the fact that it can

model experimental behaviours measured with the detailed

Chipman (1969) foil method more flexibly than the conven-

tional dead-time models.

In the present study, a hypothetical formula of statistical

variance for the intermediately extended dead-time model is

proposed and compared with the experimental statistical

properties obtained from repeated measurements based on

the Chipman foil method applied to X-ray detection systems

of laboratory X-ray and synchrotron powder diffractometers.

2. Intermediately extended dead-time model

The intermediately extended dead-time model was originally

developed to model the intermediate character of the count-

loss behaviour observed for a real X-ray detection system (Ida

& Iwata, 2005). The average count �int is given by

�int ¼ fext ½ fnonðr; �1Þ; �2�T; ð6Þ

where



fnonðr; �Þ ¼ r=ð1þ r�Þ ð7Þ

and

fextðr; �Þ ¼ r expð�r�Þ ð8Þ

are throughput functions for the non-extended and extended

dead-time models, respectively.

It is convenient to substitute the total dead-time parameter

� and the degree of extension � for the parameters �1 and �2,

via the equations

� � �1 þ �2; ð9Þ

� � �2
2=�

2; ð10Þ

so that the formula exactly gives the non-extended and

extended dead-time dependences for � ¼ 0 and � ¼ 1,

respectively. The throughput function of the model is then

expressed by

fintðr; �; �Þ ¼ fext ½ fnonðr; �1Þ; �2�; ð11Þ

�1 ¼ � � �2;

�2 ¼ �
1=2�:

It is also known that the formula given by Ida & Iwata

(2005),

fint0 ðr; �; �Þ ¼

�
t�1
2 ½expð�r1t2Þ � expð�2r1t2Þ� ½t2 6¼ 0�

r1 ½t2 ¼ 0�;

ð12Þ

r1 ¼ r=ð1þ rt1Þ;

t1 ¼ � � 3t2=2;

t2 ¼ ð6�=13Þ1=2�;

is a good approximation for fintðr; �; �Þ, and an explicit formula

for the inverse function of fint0 ðr; �; �Þ is available as

f�1
int0 ðm; �; �Þ ¼ r1=ð1� r1t1Þ; ð13Þ

r1 ¼

�
�t�1

2 ln ½1þ ð1� 4mt2Þ
1=2
�=2

� �
½t2 6¼ 0�

m ½t2 ¼ 0�;
ð14Þ

where m is the observed count rate.

It should be noted that the formula for fintðr; �; �Þ given in

equation (11) is not simply the model for a series of two

counting devices with non-extended and extended dead-time

characters, because the output pulses affected by the non-

extended dead-time counting loss cannot be modelled by

Poisson statistics, while the formula of equation (8) implicitly

assumes the Poisson statistics of the input pulses for the

extended dead-time device.

Changing the viewpoint, the formula given by equation (11)

would be justified for a hypothetical series of two devices,

where the throughput of the first device is given by equation

(7) but the output pulses from the first device are still

expressed by Poisson statistics, and the second device serially

connected to the first device loses counts following the

extended dead-time scheme given by equation (8). Then the

statistical variance of the intensity measured by the hypothe-

tical series is logically given by

�2
int ¼ r2T expð�r2�2Þ ½1� 2r2�2 expð�r2�2Þ�; ð15Þ

r2 ¼ r=ð1þ r�1Þ: ð16Þ

Even though the above formula of variance for the inter-

mediately extended dead-time model may appear too artifi-

cial, it will still be worth trying to compare the values

predicted by the model with experimental observations.

3. Experimental

3.1. Laboratory X-ray diffractometer

The counting-loss characteristics of the X-ray detection

system of a laboratory powder X-ray diffractometer (Rigaku

RAD-2C) were investigated. A Cu K� tube operated at 40 kV

and 30 mA was used as the X-ray source. Several aluminium

foils were inserted into the beam path to adjust the maximum

intensity, which was measured with a scintillation counter. The

allowed level of the signal pulses was restricted with a pulse

height analyser (PHA) unit to within 26 and 166% relative to

the most frequently detected level of pulses.

A home-made mechanism to insert and remove an addi-

tional attenuator of nine aluminium foils with 20 mm thickness

(180 mm thickness in total) was attached to the diffractometer;

this attenuator was remotely operated by the controller for the

diffractometer.

A flat single-crystalline plate of �-quartz (001) was placed at

the specimen position, and the X-ray intensity was varied in 48

steps by finely scanning the 2�/� axis around the 003 reflection

peak located at 2� ’ 26:7�.
At each intensity step, two sets of measurements of X-ray

intensity were obtained, each over a 0.5 s period, repeated 500

times by inserting and 500 times by removing the additional

attenuator. This means that the number of unattenuated and

attenuated intensity data at each intensity step is N ¼ 1000 for

each condition. The total measurement time needed to

complete the data collection was about 14 h. The time

dependence of the measured count observed at a certain

intensity data point is shown in Fig. 1.

3.2. Synchrotron powder diffractometer

The counting-loss characteristics of an X-ray detection

system of a synchrotron powder diffractometer with multiple

detection systems on beamline BL-4B2 at the Photon Factory

in Tsukuba (Toraya et al., 1996) were also investigated.

A synchrotron beam monochromated at 0.12 nm with a

double Si(111) crystal monochromator and collimated with a

cylindrical mirror was used as the X-ray source. Since the

electron storage ring was operated in multi-bunch mode

during the measurement, the time structure of the synchrotron

X-rays is not expected to be significant for the detection

system, which has a response time of about 1 ms. The direct

beam attenuated with a molybdenum foil with 10 mm thickness
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was introduced onto a scintillation counter. A mechanism to

insert and remove an additional attenuator of 16 Al foils with

12 mm thickness (192 mm thickness in total) was attached on

the upstream side on the entrance slit (2.5 mm width, 0.5 mm

height) of the diffractometer. The intensity of the X-rays at the

detector was varied in 41 steps by rotating stepwise a centre

slit of 0.5 mm in height attached to the � axis. The allowed

level of the signal pulses was restricted with a PHA (Rigaku

5320 C1) to within 50 and 150% relative to the most

frequently detected level of pulses.

At each intensity step, five sets of measurements of X-ray

intensity were obtained, each over a 0.5 s period, repeated 100

times by inserting and 100 times by removing the additional

attenuator. The total measurement time needed to complete

the data collection was about 12 h. The time dependence of

the measured count observed at a certain intensity data point

is shown in Fig. 2.

4. Results and discussions

4.1. Analysis of data collected with laboratory diffractometer

Since the number of counts observed for the laboratory

diffractometer has shown slight time dependence, as can be

seen in Fig. 1, a segmented linear dependence has been fitted

to the observed intensities, and the variance of residuals is

treated as the modified statistical variance of the measured

intensity. No significant time dependence has been observed in

the values of residuals.

The mean, variance of raw data and variance of residuals

for the intensities measured on removal of the additional

attenuator (unattenuated intensities) are plotted versus the

average count measured on insertion of the additional

attenuator (attenuated intensities) in Fig. 3.

The values of mean m, variance of raw data v and variance

of residuals s for the intensity data sets fyig ði ¼ 1; . . . ;NÞ are,

respectively, calculated as

m ¼ N�1
PN
i¼1

yi; ð17Þ

v ¼
PN
i¼1

ðyi �mÞ2=ðN � 1Þ; ð18Þ
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Figure 2
Typical time dependence of intensities measured by Chipman measure-
ments for the synchrotron powder diffractometer. See Fig. 1 for
definitions.

Figure 1
Typical time dependence of intensities measured by the repeated
Chipman method for the laboratory powder X-ray diffractometer. (a)
Attenuated intensities (grey dots) and fitted segmented linear depen-
dence (solid lines), (b) residuals of the fit shown in (a), (c) unattenuated
intensities (grey dots) and fitted segmented linear dependence (solid
lines), and (d ) residuals of the fit shown in (c).

Figure 3
Results of repeated Chipman measurements for the laboratory powder
X-ray diffractometer. Lower panel: average unattenuated intensities
mhigh (crosses), variance of raw data vhigh (open circles), variance of
residuals shigh (solid circles), fitting curve for mhigh based on an
intermediately extended dead-time model (solid line), and variance
calculated with the optimized parameters (broken line) plotted versus
average attenuated intensities mlow. Upper panel: residuals of fitting
(crosses) and statistical errors about the average (solid lines, see text),
and the errors estimated for a single Chipman measurement (broken
lines).



s ¼
PN
i¼1

½yi � gðti; a1; . . . ; aPÞ�
2=ðN � PÞ; ð19Þ

where gðt; a1; . . . ; aPÞ is a function with P parameters to

optimize the segmented linear dependence on the time t.

The errors for the above expectation values are, respec-

tively, estimated by

�m ¼

�XN

i¼1

ðyi �mÞ2

NðN � 1Þ

�1=2

; ð20Þ

�v ¼

�XN

i¼1

ðyi �mÞ
4

N2
�

N � 3

NðN � 1Þ
v2

�1=2

; ð21Þ

�s ¼

�XN

i¼1

yi � gðti; a1; . . . aPÞ
� �4

N2
�

s2

N

�1=2

: ð22Þ

The dependence of the mean unattenuated intensities mhigh

upon the attenuated intensities mlow is fitted by using an

approximate formula for the intermediately extended dead-

time model (Ida & Iwata, 2005), given by

mhigh ¼ fint0 ½ f
�1
int0 ðmlow=T; �; �Þ=a; �; ��T; ð23Þ

where a is the transmittance of the additional attenuator.

The observed dependence of mhigh versus mlow is fairly well

reproduced by the model with the optimized values of trans-

mittance a ¼ 0:11806 ð12Þ, dead-time � ¼ 1:706 ð2Þ ms and

degree of extension � ¼ 0:6450 ð16Þ.

It is also concluded that the dependence is not completely

modelled by equation (23), as the residuals plotted as crosses

in the upper panel of Fig. 3 show a systematic deviation larger

than the estimated statistical errors of the average count,

drawn as solid lines (which are almost coincident with the zero

line owing to their small values). The errors of intensities

estimated for a single Chipman measurement, simply calcu-

lated by multiplication of the errors for the average by

ðN � 1Þ1=2
¼ 9991=2, are shown as broken lines in the upper

panel of Fig. 3. The figure demonstrates that the incomplete-

ness of the model would not appear significant if data

collected by a single Chipman measurement were used to

evaluate the parameters a, � and � in equation (23).

The plot of the observed variance, vhigh and shigh, in Fig. 3

clearly indicates that the variance evaluated by the repeated

measurements is systematically smaller than the average mhigh,

as has been predicted by the conventional theoretical models

for counting loss of detection systems (Müler, 1974).

The curve calculated by equation (15) with the values of a, �
and � optimized to fit the mean values is drawn as a broken

line in Fig. 3. The observed values of variance are slightly

larger than the values calculated by the intermediately

extended dead-time model, which appears more significant in

the higher count rate regions. The slight difference still seems

reasonable, because the model does not include any other

origins than the segmented linear time dependence for the

variation of the source X-ray intensities.

4.2. Analysis of data collected with synchrotron diffract-
ometer

The number of counts observed for the synchrotron

diffractometer has shown a more significant time dependence

than that for the laboratory diffractometer, as can be seen in

Fig. 2. The data shown in Fig. 2 were measured at the highest

intensity point in the series of measurements, and the ampli-

tude of the periodic time dependence was about 0.05% rela-

tive to the average value. The gradual decrease in intensity

may be attributed to the decay of the synchrotron beam

supplied from the storage ring, while the origin of the periodic

behaviour is not clear. A segmented linear dependence has

been fitted to the observed intensities, and the variance of

residuals is treated as the modified statistical variance of

measured intensity, similarly to the analysis of the data

collected with the laboratory diffractometer. No significant

time dependence could be found in the values of residuals.

The mean mhigh, variance of raw data vhigh and variance of

residuals shigh of the intensities measured on removal of the

additional attenuator (unattenuated intensities) are plotted

versus the average count mlow measured on insertion of the

additional attenuator (attenuated intensities) in Fig. 4.

The dependence of the mean unattenuated intensities mhigh

on the attenuated intensities mlow is well fitted by equation

(23), with the optimized parameters of transmittance

a ¼ 0:12276 ð3Þ, dead-time � ¼ 0:9470 ð4Þ ms and degree of

extension � ¼ 1:0521 ð9Þ. The observed dependence is not

completely modelled by equation (23), as the residuals plotted

in the upper panel of Fig. 4 show systematic deviation larger

than the statistical errors, similarly to the results for the

laboratory diffractometer.

The dependence of raw variance vhigh on mlow shows a large

dispersion, as can be seen at the highest intensity point in

Fig. 4, while the dependence of shigh is found to be almost

smooth within the estimated errors �shigh. This figure suggests

that most of the periodic time dependence shown in Fig. 2 has

been removed by subtracting the segmented linear depen-

dence.
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Figure 4
Results of repeated Chipman measurements for the synchrotron powder
diffractometer. See Fig. 3 for definitions.



The curve calculated by equation (15) with the values of a, �
and � optimized to fit the mean values is drawn as a broken

line in Fig. 4. Even though the experimental variances have

been estimated at larger values than the calculated curve, the

variance of residuals shigh approaches closer to the calculated

curve than the raw variance vhigh. Since the time-dependent

variation of the source X-ray intensities is not likely to be fully

modelled by the segmented linear dependence, it is suggested

that the statistical variance calculated by equation (15) still

gives an appropriate description of the statistical variance of

the measured count.

4.3. Correction of counting loss

When the dead-time � and the degree of extension � are

known, the corrected count rate rc can be calculated from the

observed count rate robs ¼ m=T by applying the following

equation:

rc ¼ f�1
int0 ðrobs; �; �Þ: ð24Þ

Statistical errors for the corrected count rate, �rc, can be

calculated by

�rc ¼ �robsðdrc=drobsÞ ¼ �robsðdrobs=drcÞ
�1; ð25Þ

where

ð�robsÞ
2
¼ r2T�1 expð�r2�2Þ ½1� 2r2�2 expð�r2�2Þ�; ð26Þ

r2 ¼ rc=ð1þ rc�1Þ; ð27Þ

drobs=drc ¼ ðdr2=drcÞ ð1� r2�2Þ expð�r2�2Þ; ð28Þ

dr2=drc ¼ 1=ð1þ rc�1Þ
2: ð29Þ

It should be noted that the error �rc for the corrected count

rate rc diverges to infinity when the count rate approaches the

inverse of the dead time ��1.

Tables 1 and 2 list the expected observed count rate, robs,

and the variances of the observed and corrected intensities,

ð�robsTÞ
2 and ð�rcTÞ2, for several values of true count rate r,

calculated using the parameters estimated in xx4.1 and 4.2 for

the laboratory and synchrotron diffractometers.

The statistical variance of the corrected intensity ð�rcTÞ
2 is

close to the average count in the low count rate region,

whereas it shows a rapid increase when the true count rate r

approaches the reciprocal of the dead-time � of the detection

system. This result indicates that the correction for statistical

errors is necessary on application of the weighted least-

squares method as a maximum-likelihood estimation, espe-

cially in the high count rate region.

5. Conclusion

The statistical properties of X-ray intensities measured with

laboratory and synchrotron powder diffractometers have been

experimentally investigated. Repeated application of Chip-

man’s method has revealed that the statistical variance of the

observed intensity, affected by counting loss of the detection

system, is lower than the average, as has been suggested by

conventional theoretical models for counting loss.

The statistical errors can be evaluated for any observed

intensity by applying the intermediately extended dead-time

model including dead-time � and degree of extension � as

fixed parameters.

Part of this work has been performed under the approval of

the Photon Factory Program Advisory Committee (proposal

No. 2007 G093).
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Table 1
True count rate r, observed count rate robs (both in counts per second),
variance of observed count ð�robsTÞ

2 and variance of corrected count
ð�rcTÞ

2, predicted for the laboratory diffractometer with a dead-time
� ¼ 1:706 ms and degree of extension � ¼ 0:6450.

r robs ð�robsTÞ
2

ð�rcTÞ2

300 300 300 300
1000 998 996 1002
3000 2985 2960 3022
1 � 104 0.983 � 104 0.957 � 104 1.024 � 104

3 � 104 2.852 � 104 2.629 � 104 3.226 � 104

1 � 105 0.847 � 104 0.651 � 105 1.286 � 105

3 � 105 1.876 � 105 0.912 � 105 7.194 � 105

Table 2
Count rate (counts per second) and variance predicted for the
synchrotron diffractometer with a dead-time � ¼ 0:947 ms and degree of
extension � ¼ 1:052.

r robs ð�robsTÞ
2

ð�rcTÞ2

300 300 300 300
1000 999 997 1001
3000 2991 2974 3008
1 � 104 0.991 � 104 0.972 � 104 1.009 � 104

3 � 104 2.916 � 104 2.751 � 104 3.085 � 104

1 � 105 0.909 � 104 0.749 � 105 1.106 � 105

3 � 105 2.253 � 105 1.267 � 105 4.434 � 105
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