
Graduate School of Engineering, Nagoya Institute of Technology
“Crystal Structure Analysis”

Takashi Ida (Advanced Ceramics Research Center)
Updated Nov. 13, 2013 

Chapter 5  Diffraction condition 
In Chap. 4, it has been shown that the average structure factor of a crystal is given by the following 
expressions, even if the thermal vibration of atoms cannot be neglected.  
	



   
Ftotal (


K ) = G(


K )F(


K )  : average structure factor of a crystal, 	

 (5.1)

	


   
G(

K ) ≡ exp 2π i


K ⋅ ξ a +η


b +ς c( )⎡⎣ ⎤⎦

ξ ,η ,ζ
∑ , 	

 (5.2)

	


   
F(

K ) = f j (


K )Tj (


K )exp 2π i


K ⋅ rj( )

j=1

M

∑  : crystal structure factor, 	

 (5.3)

	


    
f j (

K ) ≡ ρ j (

r )exp 2π i

K ⋅ r( )d v

R3
∫  : atomic scattering factor, 	

 (5.4)

	


    
Tj (

K ) ≡ g j (

r )exp 2π i

K ⋅ r( )d v

R3
∫ : atomic displacement factor, 	

 (5.5)

where it is assumed that M atoms are included in a unit structure, and 
   
ρ j (
r )  is the electron density 

of the j-th atom, 
   
g j (
r )  is the probability density of the location of the j-th atom around the average 

position.  Note that a simplified expression: 
	



    
d v

R3
∫

is used instad of 

	


   


−∞

∞

∫
−∞

∞

∫
−∞

∞

∫ d xd yd z ,

in Eqs. (5.4) & (5.5).  The symbol “R3” means that the function should be integrated over three 
dimensional real space, and dv = d xd yd z  means the  volume element in the simplified expression.  

     In this chapter, the diffraction condition given by Eq. (5.2) is discussed.  It will be shown that it 
is almost equivalent to the Bragg’s law, though it may look quite different from the expression of 
the Bragg’s equation: nλ = 2d sinθ .  



5-1  Laue function & Laue condition
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Fig. 5.1  A crystal with parallelepiped shape

Note that the expression of Eq. (5.2) does not fully determine the formula about the diffraction 
condition    G(


K ) .  The concrete formula of    G(


K )  should depend on the size and shape of the 

crystal, through the ranges of the subscripts ξ , η , ζ  to locate each unit cell.
     Assume that the shape of the crystal is parallelepiped with three edges given by the repetition 
numbers  of  Na ,  Nb ,  Nc  along the unit cell vectors    

a ,   

b ,   
c , respectively.  (It is known that a 

crystal of sodium chloride NaCl certainly tends to have cubic shape.) In this particular case, we can 
fully determine the formula of    G(


K )  by the following equation, 

	


   
G(

K ) = exp 2π i


K ⋅ ξ a +η


b +ζ c( )⎡⎣ ⎤⎦

ζ =0

Nc−1

∑
η=0

Nb−1

∑
ξ=0

Na−1

∑

	


   
= exp 2π iξ


K ⋅ a( ) exp 2π iη


K ⋅

b( ) exp 2π iζ


K ⋅ c( )

ζ =0

Nc−1

∑
η=0

Nb−1

∑
ξ=0

Na−1

∑ .	

 (5.6)

It is not difficult to solve the above equation.  For example, the sum : 

	


   

exp 2π iξ

K ⋅ a( )

ξ=0

Na−1

∑    
= 1+ exp 2π i


K ⋅ a( ) + exp 4π i


K ⋅ a( ) ++ exp 2 Na −1( )π i


K ⋅ a⎡⎣ ⎤⎦

is nothing but the sum of a geometric progression with the first term of 1 and common ratio of 

   
exp 2π i


K ⋅ a( ) , and applying the formula : 

	


  

x j

j=0

n−1

∑ = 1− xn

1− x
, 

the solution is given by

	


   

exp 2π iξ

K ⋅ a( )

ξ=0

Na−1

∑ =
exp 2π i Na


K ⋅ a( )−1

exp 2π i

K ⋅ a( )−1

.	

 (5.7)



As the energy of a wave is proportional to the squared amplitude, the intensity scattered by a crystal 
is proportional to 

	


   

Ftotal (

K )

2
= G(


K )

2
F(

K )

2
.	

 (5.8)

So the intensity should be proportional to the squared absolute value and the formula for intensity is 
given by

	



   

exp 2π iξ

K ⋅ a( )

ξ=0

Na−1

∑
2

=
exp 2π i Na


K ⋅ a( )−1

2

exp 2π i

K ⋅ a( )−1

2

	


   
=

exp −2π i Na


K ⋅ a( )−1⎡⎣ ⎤⎦ exp 2π i Na


K ⋅ a( )−1⎡⎣ ⎤⎦

exp −2π i

K ⋅ a( )−1⎡⎣ ⎤⎦ exp 2π i


K ⋅ a( )−1⎡⎣ ⎤⎦

	


   
=

2− 2cos 2πNa


K ⋅ a( )

2− 2cos 2π

K ⋅ a( )    

=
1− cos 2πNa


K ⋅ a( )

1− cos 2π

K ⋅ a( )    

=
sin2 πNa


K ⋅ a( )

sin2 π

K ⋅ a( ) ,	

 (5.9)

for example.  Finally, the following formula can be derived,

	


   
G(

K )

2
=

sin2 πNa


K ⋅ a( )

sin2 π

K ⋅ a( )

sin2 πNb


K ⋅

b( )

sin2 π

K ⋅

b( )

sin2 πNc


K ⋅ c( )

sin2 π

K ⋅ c( ) .	

 (5.10)

This function is called the Laue function.  
     The Laue function is defined as a three-dimensional function, but the main characteristics of the 
function can be understood through a one-dimensional part of the function.  

     What change is expected in the value of 
   

sin2 πNa


K ⋅ a( )

sin2 π

K ⋅ a( )  on changing the length or direction of 

the scattering vector  

K ?  The profile of the function is shown in Fig. 5.2, where   

� 

 
K ⋅  a  is taken as 

the horizontal axis.  Main peak(s) of the function are located at   

K ⋅ a = h  ( h : integer),  the intensity 

becomes zero at   ±1/ Na ,   ±2 / Na ,   ±3/ Na , ...,  and small sub-peaks are located between them.  The 

height of the main peak is given by   Na
2 , that is, 

	


  
lim
x→0

sin2 πNax( )
sin2 πx( ) = Na

2 lim
x→0

sin πNax( )
πNax

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
πx

sin πx( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

= Na
2 	

 (5.11)
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Fig. 5.2  Laue function 
   

sin2 πNa


K ⋅ a( )

sin2 π

K ⋅ a( )  for the case   Na = 10

and the full width at the half maximum is about   1/ Na .  On increasing the value of  Na , the height 

of the main peak becomes higher, and the width becomes narrower.  For the case of   Na = 10 , the 

height of the main peak is   Na
2 = 100 , while the height of the 1st sub-peak is about

	


  

sin2 πNa 3/ 2Na( )⎡⎣ ⎤⎦
sin2 π 3/ 2Na( )⎡⎣ ⎤⎦

= 1
sin2 π 3/ 2Na( )⎡⎣ ⎤⎦

= 4.85 ,

and the height of the 2nd sub-peak is about

	


  

sin2 πNa 5 / 2Na( )⎡⎣ ⎤⎦
sin2 π 5 / 2Na( )⎡⎣ ⎤⎦

= 1
sin2 π 5 / 2Na( )⎡⎣ ⎤⎦

= 2.00 ,

... and so on, and we can expect all of the intensities of the small sub-peaks become negligible for 
large number of  Na , typically about 103 ~ 105.  In the case of an ordinary crystal, which has large 

values of  Na ,  Nb  ,  Nc  , the Laue function in Eq. (5.10) returns significant values, only when 

	


  


K ⋅ a = h
K ⋅

b = k

K ⋅ c = l

⎧
⎨
⎪

⎩⎪
	

 (h, k, l : integer)	

 (5.12)

and the maximum value should be given by 
	



   
G(

K )

2
→ Na NbNc( )2

= N 2 	

 (5.13)

The value  Na NbNc = N  is the total number of unit cells in the crystal.  Since the width of the peak 
is proportional to 1 / N, the integrated intensity should be proportional to N, as expected.  The  
condition given by Eq. (5.12) is called the Laue condition.  
     An approximate formula for the Laue function for the range near one of the maxima is given by



	


  
G K + ΔK( ) 2

  
=

sin2 πNa K + ΔK( )a⎡⎣ ⎤⎦
sin2 π K + ΔK( )a⎡⎣ ⎤⎦ πKa( )   

=
sin2 πNah+ πNaΔKa( )

sin2 πh+ πΔKa( )

	


  
=

sin2 πNaΔKa( )
sin2 πΔKa( ) =

sin2 πΔKD( )
sin2 πΔKD / Na( )

  
Na→∞⎯ →⎯⎯

Na
2 sin2 πΔKD( )
π2 ΔK( )2

D2
,

where  D = Naa  is the dimension of the crystal along the 

� 

a-direction.  
     Another formula : 

	


  

fLaue ΔK( ) = sin2 πΔKD( )
π2 ΔK( )2

D
, 	

 (5.14)

satisfying the normalization condition: 

	


  −∞

∞

∫ fLaue ΔK( )d ΔK( ) = 1 ,

may sometimes be more convenient.  The peak-top value of the normalized formula is given by
	



  
lim
ΔK→0

fLaue ΔK( ) = D .

The formula given by (5.14) is also called the Laue function.  The relation between the scattering 
vector and scattering angle :

	


  
K = 2sinθ

λ
leads the following relation

	


  
ΔK =

Δ2θ( )cosθ
λ

,

which will be discussed again in Chap. 6.  

5-2  Lattice vectors and reciprocal lattice vectors

The three vectors,   
a ,   

b ,   
c , to represent the periodicity of the crystal are called the lattice vectors 

or the unit translational vectors.  The three vectors,    
a* ,    

b* ,    
c* , defined by the following 

equations are called the reciprocal lattice vectors.  

	


   

a ⋅ a* = 1 a ⋅

b* = 0 a ⋅ c* = 0

b ⋅ a* = 0

b ⋅

b* = 1


b ⋅ c* = 0c ⋅ a* = 0 c ⋅


b* = 0 c ⋅ c* = 1

	

 (5.15)

The vector    
a*  is perpendicular to    


b and   

c , and the inner product with   
a  is 1, for example.  By 

using the reciprocal lattice vectors, the Laue condition defined by Eq. (5.12) is exactly equivalent to 
that the scattering vector   

� 

 
K  can be expressed by 

	

    

K = ha* + k


b* + lc* 	

 (

� 

h, 

� 

k , 

� 

l : integer) .	

 (5.16)

When we assume that the x, y, z  components of the lattice vectors   
a ,   

b ,   
c  and the reciprocal 

lattice vectors    
a* ,    

b* ,    
c*  are given by

	



  

a =
ax

ay

az

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,  

  


b =

bx

by

bz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,  

  

c =
cx

cy

cz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, 	

 (5.17)



	



   

a* =
ax

*

ay
*

az
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,  

   


b* =

bx
*

by
*

bz
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,  

   

c* =
cx

*

cy
*

cz
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, 	

 (5.18)

The relation given by Eq. (5.15) is equivalent with the following equation, 

	



  

ax
* ay

* az
*

bx
* by

* bz
*

cx
* cy

* cz
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ax bx cx

ay by cy

az bz cz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

1 0 0
0 1 0
0 0 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ , 	

 (5.19)

which means the inverse matrix of the matrix defined by the reciprocal lattice vector 

  
a

b c( )  is equivalent with the transposed matrix of the matrix defined by the lattice vectors 

   
a*

b* c*( ) .  

     The outer product   
p × q  for arbitrary two three-dimensional vectors 

  

p =
px

py

pz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,  

  

q =
qx

qy

qz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

is defined by

	



  

p × q ≡
pyqz − pzqy

pzqx − pxqz

pxqy − pyqx

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.  	

 (5.20)

From the definition, we obtain
	



   
p ⋅ p × q( ) = px pyqz − pzqy( ) + py pzqx − pxqz( ) + pz pxqy − pyqx( ) = 0 ,	

 (5.21)

	


   
q ⋅ p × q( ) = qx pyqz − pzqy( ) + qy pzqx − pxqz( ) + qz pxqy − pyqx( ) = 0 , 	

 (5.22)

and can confirm that the vector   
p × q  is perpendicular to both   

p  and   
q .  By comparing the 

following three equations, 

	


   
p

2 q
2
= px

2 + py
2 + pz

2( ) qx
2 + qy

2 + qz
2( )

	


  
= px

2qx
2 + px

2qy
2 + px

2qz
2 + py

2qx
2 + py

2qy
2 + pz

2qz
2 + pz

2qx
2 + pz

2qy
2 + pz

2qz
2 ,	

 (5.23)

	


   
p ⋅ q( )2

= pxqx + pyqy + pzqz( )2
, 

	


  
= px

2qx
2 + py

2qy
2 + pz

2qz
2 + 2 pxqx pyqy + 2 pyqy pzqz + 2 pzqz pxqx 	

 (5.24)

	


   
p × q

2
= pyqz − pzqy( )2

+ pzqx − pxqz( )2
+ pxqy − pyqx( )2

	


  
= py

2qz
2 + 2 pyqz pzqy + pz

2qy
2 + pz

2qx
2 − 2 pzqx pxqz + px

2qz
2 + px

2qy
2 − 2 pxqy pyqx + py

2qx
2

	

 	

 (5.25)
we obtain
	

    

p
2 q

2
= p ⋅ q( )2

+ p × q
2
.  	

 (5.26)

When the angle between the vectors   
p  and   

q  is θ  , that is,    
p ⋅ q = p q cosθ , the following 

relation is derived, 



	


   
p × q = p

2 q
2
− p

2 q
2
cos2θ = p q sinθ ,  	

 (5.27)

that is，  
p × q  is the vector perpendicular to    

p  and   
q  [Eq. (5.21), Eq. (5.22)] having the length of 

   
p q sinθ  [Eq. (5.27)].  

     The parallelepiped defined by the lattice vectors   
a ,   

b ,   
c  is traditionally called  the unit cell in 

the field of crystallography.  
     The outer product   

a ×

b  is the vector orthogonal to    

a  and   

b , having the length equal to the 

“area of the parallelogram” formed by   
a  and   


b .  As 

  

a ×

b

a ×

b

 is the vector perpendicular to    
a  and 

  

b , having the length of unity, 

  

a ×

b( ) ⋅ c
a ×

b

 is the length of projection of   

� 

 c  on to the direction 

perpendicular to   

� 

 a  and   

� 

 
b .  The the unit cell volume is given by  

  
V = a ×


b( ) ⋅ c .  Similar relations 

hold for  the combination of (  

b  and   

c ) and (  
c  and   

a ), as summarized by 
	



  
V = a ×


b( ) ⋅ c =


b × c( ) ⋅ a = c × a( ) ⋅ b .  	

 (5.28)

The following relations between the lattice vectors and the reciprocal lattice vectors are also 
satisfied,

	


   
a* =


b × c

V
,	

 (5.29)

	


   


b* =

c × a
V

,	

 (5.30)

	


   
c* =

a ×

b

V
,	

 (5.31)

and the reciprocal lattice vector can be calculated from the lattice vectors by the above equations.  
It is not necessary to use the above formula on evaluation of the reciprocal lattice vectors.  All we 
should do is evaluation of the 3-by-3 inverse matrix.  But the coding (computer programming) 
based on Eqs. (5.29) - (5.31) is recommendable because of unambiguity and efficiency on realistic 
computing.  

5-3  Lattice constants

　The relations between the lattice constants  a ,  b,  c , α , β , γ  and the lattice vectors   
a ,   

b ,   
c  

are following, 

	

  a  : length of   
a

	

  b  : length of   

b

	

  c  : length of   
c

	

 α  : angle between   

b  and   

c



	

 β  : angle between   
c  and   

a

	

 γ  : angle between   
a  and   


b

It is easy to evaluate the lattice constants   a,b,c,α ,β ,γ( )  from the components of the lattice vectors 

  
ax ,ay ,az ,bx ,by ,bz ,cx ,cy ,cz( )  , 

	


   
a = a = ax

2 + ay
2 + az

2 ,

	



   

cosα =

b ⋅ c
bc

=
bxcx + bycy + bzcz

bx
2 + by

2 + bz
2( ) cx

2 + cy
2 + cz

2( )
for example.
     In contrast, it is a little complicated to evaluate the lattice vectors from the lattice constants, 
partly because of arbitrariness about the choice of direction of the coordinate system.  
     One unambiguous selection of the coordinate system is, 
	

 (i) assume   

a  parallel to  the X axis

	

 (ii) assume   

b  is on the upper XY plane (Y > 0).

In this case, it is easy to find that the lattice vector  
a  should be

	


   

a =
a
0
0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
	

 (5.32)

and the lattice vector  

b  should be given by

	



   


b =

bcosγ
bsinγ

0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.	

 (5.33)

It is assumed that the lattice vector   
c  is given by

	



  

c =
cx

cy

cz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.	

 (5.34)

The condition : “the angle between   
c  and   

a  is β ” is expressed by 
	

    

c ⋅ a = cacosβ , 	

 (5.35)
and the following relation is derived from Eqs. (5.32) and (5.34), 
	



   
c ⋅ a = cxa + cy 0+ cz 0 = cxa .  	

 (5.36)

Then, from Eq. (5.35), the x-component of the lattice vector   
c  is determined by 

	

   cx = ccosβ .	

 (5.37)

     Next, the relation : “the angle between   

b  and   

c  is α ” gives
	

    


b ⋅ c = bccosα , 	

 (5.38)

and from Eqs. (5.33) and (5.34) ,
	



   

b ⋅ c = bcx cosγ + bcy sinγ

	


  
= b ccosβ cosγ + cy sinγ( ) ,	

 (5.39)



and then

	


  
cy =

c cosα − cosβ cosγ( )
sinγ

.	

 (5.40)

     Finally, the condition : “the length of   

� 

 c  is 

� 

c” determines the z-component  cz  of the lattice 
vector   

� 

 c  by 

	


  
cz = c2 − cx

2 − cy
2 	

 (5.41)

The coordinates derived by this method belongs to the “right-handed system”.  
     The unit cell volume V can be calculated from the components of the lattice vectors determined 
in the above way, simply by
	



 
V = axbycz 	

 (5.42)

     The components of the reciprocal lattice vectors can be calculated by 

	



   

a* =
ax

*

ay
*

az
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

b × c

V
= 1

V

bycz − bzcy

bzcx − bxcz

bxcy − bycx

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, 

and so on.  

5-4  Lattice plane

The Laue condition restricts the appearance of sharp diffraction peaks for the scattering 
(diffraction) vector   


K  to satisfy    


K = ha* + k


b* + lc*  ( h ,  k ,  l : integer).  On the other hand, the 

vector defined by 
	

    


dhkl

* ≡ ha* + k

b* + lc* 	

 (5.43)

means the vector with the length of reciprocal interplanar spacing along the direction orthogonal to 
the lattice plane indexed by h, k, l (hkl-plane).  The index hkl is called Miller index.  
   The orthogonal direction and interplanar spacing of the  hkl -plane are equivalent with the 

orthogonal direction of a flat plane passing through the three points defined by the three vectors 
  

a
h

, 

  


b
k

, 
  

c
l

 (for h ≠ 0 , k ≠ 0 , l ≠ 0 ), and the distance of the plane from the origin, respectively.  The 

vector   
p  locating an arbitrary point on this plane is expressed by

	


  

p =
a
h
+ x


b
k
−
a
h

⎛
⎝⎜

⎞
⎠⎟
+ y

c
l
−
a
h

⎛
⎝⎜

⎞
⎠⎟
	

 ( x , y : arbitrary real number), 	

 (5.44)

and the plane that is parallel to the above plane and passes through the origin should be expressed 
by

	


   

p0 = x0


b
k
−
a
h

⎛
⎝⎜

⎞
⎠⎟
+ y0

c
l
−
a
h

⎛
⎝⎜

⎞
⎠⎟
	

 (   x0 ,   y0  : arbitrary real number).	

 (5.45)

Examine the inner product of the vectors    
p0  and    


dhkl

*  , defined by Eq. (5.45) and Eq. (5.43).  You 

will find that the relation:    
p0 ⋅

dhkl

* = 0  is always satisfied for any   x0 ,   y0 .  It means that the vector 



   

dhkl

*  is directed along the orthogonal direction of the ( hkl ) plane.  The interplanar spacing should 

be given by the inner product of   
p  and 

   


dhkl

*


dhkl

*
.   As the relation:    

p ⋅

dhkl

* = 1 holds for any x and y, we 

can conclude that the interplanar spacing is equivalent to 
   

1

dhkl

*
.  

     Next, let us examine the case of   l = 0 .  The   hk0 -plane means that it passes through the two 

points  
  

a
h

 and 
  


b
k

, and is parallel to   
c .  The vector   

p  to express this plane is given by

	


  

p =
a
h
+ x


b
k
−
a
h

⎛
⎝⎜

⎞
⎠⎟
+ yc 	

 (x, y : arbitrary real number)	

 (5.46)

and the plane that is parallel to the above and passes through the origin is given by

	


   

p0 = x0


b
k
−
a
h

⎛
⎝⎜

⎞
⎠⎟
+ y0
c 	

 (x0, y0 : arbitrary real number), 	

 (5.47)

and the relations :    
p0 ⋅

dhkl

* = 0  and    
p ⋅

dhkl

* = 1  are satisfied.  The situation will exactly be same for 
the case of   k = 0  or   h = 0 .

     Finally, examine the case of   k = l = 0 .  The   h00 -plane passes through  
  

a
h

 , and is parallel to 

both   

b  and   

c .  The vector   
p  to express this plane is given by

	


  
p =
a
h
+ x

b + yc 	

 (x, y : arbitrary real number), 	

 (5.48)

and the parallel plane passing through the origin is given by
	

    

p0 = x0


b + y0

c 	

 (x0, y0 : arbitrary real number),	

 (5.49)

and you will find the relations    
p0 ⋅

dhkl

* = 0  and    
p ⋅

dhkl

* = 1  again.  Of course, the situation about the 
case of   h = l = 0  or   h = k = 0  will be similar.  
     We can conclude that the length of the vector     


dhkl

*  is always equal to the reciprocal of the 
interplanar spacing of the   hkl -plane.  
     If all the components 

  
(ax

*,ay
* ,az

*,bx
*,by

*,bz
*,cx

*,cy
* ,cz

*)  of the reciprocal lattice vectors    
a* ,    

b* ,    
c*  

are given, the reciprocal interplanar distance of the  hkl -plane can be calculated by

	


   
dhkl

* =

dhkl

* = hax
* + kbx

* + lcx
*( )2

+ hay
* + kby

* + lcy
*( )2

+ haz
* + kbz

* + lcz
*( )2

.  	

 (5.50)

Note that the interplanar distance  dhkl  of the lattice plane in the Bragg’s law is generally calculated 

as the “ reciprocal of the ‘reciprocal interplanar distance   dhkl
* ’ ”.

5-5  Crystal structure factor and Miller indices

The average position of the j-th atom in the unit cell 
  
rj  is expressed by

	


  
rj = x j

a + y j


b + z j

c 	

 (5.51)



where 
 
x j , 

 
y j , 

 
z j  are the fractional coordinate having values from 0 to 1.  As the diffraction peak 

only appears when the scattering vector   

K  is given by    


K = ha* + k


b* + lc*  (h, k, l : integer), the 

crystal structure factor denoted by  F(

K ) so far, can be expressed by  

	


   
Fhkl = f j


dhkl

*( )Tj


dhkl

*( )exp 2π i hx j + ky j + lz j( )⎡
⎣

⎤
⎦

j=1

M

∑ 	

 (5.52)

where
	

    


dhkl

* ≡ ha* + k

b* + lc* .  

     Here 
   
f j


dhkl

*( )  is the atomic scattering factor, and it depends only on the interplanar distance 

   
dhkl =

1

dhkl

*
, when the electron density distribution of the atom is assumed to have spherical 

symmetry.  The atomic scattering factor can be expressed by 
  
f j

sinθhkl

λ
⎛
⎝⎜

⎞
⎠⎟

, using the Bragg angle 

 θhkl  satisfying the Bragg’s equation,   λ = 2dhkl sinθhkl .  

     And 
   
Tj


dhkl

*( )  is the atomic displacement factor, generally representing anisotropic displacement 

of an atom from the average position.  

5-6  Anisotropic atomic displacement factor

     The probability density function about the displacement of an atom from the average position 
can be modeled by 

	


   
g j (
r ) = 1

(2π)3/2U1
1/2U2

1/2U3
1/2 exp − X 2

2U1

− Y 2

2U2

− Z 2

2U3

⎛

⎝⎜
⎞

⎠⎟
, 	

 (5.53)

where it is assumed that the displacement of the atom is expressed by the anisotropic (ellipsoidal) 

Gaussian function, and the vector locating the atomic position 
  

r =
x
y
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 is expressed by 

	

   
r = XpX +YpY + ZpZ ,	

 (5.54)

using the unit vectors along the three principal axes of the ellipsoid, 

	



  

pX =
pXx

pXy

pXz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, 

  

pY =
pYx

pYy

pYz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, 

  

pZ =
pZx

pZy

pZz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.  

The probability density function about the atomic displacement given by Eq. (5.53) corresponds to 
the modeling of thermal vibration of atoms by independent harmonic oscillators.  The relation 
given by Eq. (5.54) is rewritten by using a matrix

	



   

P = pX
pY

pZ( ) =
pXx pYx pZx

pXy pYy pZy

pXz pYz pZz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,	

 (5.55)

as



	


  

x
y
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= P

X
Y
Z

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.	

 (5.56)

The matrix P  is an orthogonal matrix, the transpose matrix of which is equivalent to the inverse 
matrix, that is, 

	



   

X
Y
Z

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= P−1

x
y
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= Pt

x
y
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

PXx PXy PXz

PYx PYy PYz

PZx PZy PZz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x
y
z

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.	

 (5.57)

     The atomic displacement factor based on the probability distribution of atomic displacement 
shown in Eq. (5.53) is given by 
	



   
Tj (

K ) = g j (

r )exp 2π i

K ⋅ r( )d v

R3
∫

	


   
= g j (

r )exp 2π i

K ⋅ r( )

−∞

∞

∫ d X dY d Z
−∞

∞

∫
−∞

∞

∫

	


  
= 1

(2π)3/2U1
1/2U2

1/2U3
1/2 exp − X 2

2U1

− Y 2

2U2

− Z 2

2U3

⎛

⎝⎜
⎞

⎠⎟
exp 2π i K X X + KYY + KzZ( )⎡⎣ ⎤⎦

−∞

∞

∫
−∞

∞

∫
−∞

∞

∫
	

 	

 ×   d X dY d Z

	


  
= exp −2π2 K X

2U1 + KY
2U2 + KZ

2U3( )⎡
⎣

⎤
⎦

	



  

= exp −2π2 K X KY KZ( )
U1 0 0
0 U2 0
0 0 U3

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

K X

KY

KZ

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	



   

= exp −2π2 Kx K y Kz( )P
U1 0 0
0 U2 0
0 0 U3

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Pt

Kx

K y

Kz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.  

When we define a matrix, 

	



   

U =
Uxx Uxy Uxz

U yx U yy U yz

Uzx Uzy Uzz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
≡ P

U1 0 0
0 U2 0
0 0 U3

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Pt , 

the atomic displacement factor of the j-th atom is given by

	


   
Tj (

K )

   

= exp −2π2 Kx K y Kz( )U j

Kx

K y

Kz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	


    
= exp −2π2


K tU j


K( ) , 	

 (5.58)

and the expansion results in the following formula, 



	


   
Tj (

K )

  

= exp −2π2 Kx K y Kz( )
Uxx( ) j

Uxy( )
j

Uzx( ) j

Uxy( )
j

U yy( )
j

U yz( )
j

Uzx( ) j
U yz( )

j
Uzz( ) j

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Kx

K y

Kz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

	


  
= exp −2π2 Uxx( ) j

Kx
2( + U yy( )

j
K y

2 + Uzz( ) j
Kz

2⎡
⎣⎢{

	

 	


  
+2 Uxy( )

j
Kx K y + 2 U yz( )

j
K y Kz + 2 Uzx( ) j

Kz Kx
⎤
⎦⎥} .  	

 (5.59)

     Define the matrix

	



  

U11 U12 U13

U12 U22 U23

U13 U23 U33

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

	



  

=
ax

* / a* ay
* / a* az

* / a*

bx
* / b* by

* / b* bz
* / b*

cx
* / c* cy

* / c* cz
* / c*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

Uxx Uxy Uzx

Uxy U yy U yz

Uzx U yz Uzz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  

ax
* / a* bx

* / b* cx
* / c*

ay
* / a* by

* / b* cy
* / c*

az
* / a* bz

* / b* cz
* / c*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

	



  

=

1
a* 0 0

0 1
b* 0

0 0 1
c*

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

ax
* ay

* az
*

bx
* by

* bz
*

cx
* cy

* cz
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Uxx Uxy Uzx

Uxy U yy U yz

Uzx U yz Uzz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

  

ax
* bx

* cx
*

ay
* by

* cy
*

az
* bz

* cz
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1
a* 0 0

0 1
b* 0

0 0 1
c*

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

,

	

 	

 (5.60)

and the following relation will be derived, 

	



 

Uxx Uxy Uzx

Uxy U yy U yz

Uzx U yz Uzz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

	

 	



  

=
ax bx cx

ay by cy

az bz cz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

a* 0 0
0 b* 0
0 0 c*

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

U11 U12 U13

U12 U22 U23

U13 U23 U33

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

  

a* 0 0
0 b* 0
0 0 c*

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

ax ay az

bx by bz

cx cy cz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

	



  

=
ax bx cx

ay by cy

az bz cz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

U11a
*2 U12a

*b* U13a
*c*

U12a
*b* U22b

*2 U23b
*c*

U13a
*c* U23b

*c* U33c
*2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ax ay az

bx by bz

cx cy cz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,	

 (5.61)

which leads the formula of the atomic displacement factor for the scattering vector 
   

K = ha* + k


b* + lc* ,

	


   
Tj (

K )

  
= exp −2π2 U11( ) j

h2a*2 + U22( ) j
k 2b*2 + U33( ) j

l2c*2(⎡
⎣⎢

	

 	

 	


  
+2 U12( ) j

hka*b* + 2 U13( ) j
hla*c* + 2 U23( ) j

klb*c* )⎤⎦⎥ .	

 (5.62)



The six independent elements of the matrix,  U11,U22,U33,U12,U13,U23{ } , is called anisotropic 
atomic displacement parameters.  When we define another matrix

	



  

B11 B12 B13

B12 B22 B23

B13 B23 B33

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= 2π2

ax
* ay

* az
*

bx
* by

* bz
*

cx
* cy

* cz
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Uxx Uxy Uzx

Uxy U yy U yz

Uzx U yz Uzz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ax
* bx

* cx
*

ay
* by

* cy
*

az
* bz

* cz
*

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,

	

 	

 (5.63)
the following relation is derived, 

	



  

Uxx Uxy Uzx

Uxy U yy U yz

Uzx U yz Uzz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 1

2π2

ax bx cx

ay by cy

az bz cz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

B11 B12 B13

B12 B22 B23

B13 B23 B33

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

ax ay az

bx by bz

cx cy cz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

,

	

 	

 (5.64)
and the formula of atomic displacement factor for the scattering vector    


K = ha* + k


b* + lc*  should 

be

	


   
T (

K ) = exp − B11( ) j

h2 + B22( ) j
k 2 + B33( ) j

l2 + 2 B12( ) j
hk + 2 B13( ) j

hl + 2 B23( ) j
kl⎡

⎣
⎤
⎦{ } .

	

 	

 (5.65)
The formula given by Eq. (5.65) is a little more convenient for calculation than the formula given 
by Eq. (5.62).  The six independent elements of the matrix B11,B22,B33,B12,B13,B23{ }  is also 
called anisotropic atomic displacement parameters.  The anisotropic U parameters and anisotropic 
B parameters are related by the following equations, 
	

 B11 = 2π

2a*2U11 , B22 = 2π
2b*2U22 , B33 = 2π

2c*2U33 , 

	

 B12 = 2π
2a*b*U12 , B13 = 2π

2a*c*U13 , B23 = 2π
2b*c*U23 .  	

 (5.65)

Note that the above relations between the anisotropic B and U parameters are different from the 
relation between the isotropic displacement parameters B and U,  
	

 B = 8π2U ,
as shown in Chap. 4.  
    It is difficult to find what anisotropy is expected from the value of anisotropic B parameters, 
while the parameter U11  has the meaning of “mean square atomic displacement along  

a* ”, U22  is 

the “mean square atomic displacement along  

b* ”, and U33  is the “mean square atomic 

displacement along  
c*”.  As the definition of B parameters may be introduced just for slight 

convenience on calculation, .  
     The values of anisotropic displacement parameters are sometimes restricted by the symmetry of 
the atomic positions.  Let us examine the restriction by symmetry of a crystal structure belonging to 
hexagonal system, as an example.  
     In a hexagonal crystal system, the c axis is traditionally taken to be parallel to the six-fold 
rotation axis.  If an atom is located on the six-fold rotation axis, one of the principal axes of the 
ellipsoidal atomic displacement is uniquely assigned to the c-axis (z-axis).  There remains 
arbitrariness in the selection of the direction of a and b axes, or the other two principal axes of the 
ellipsoid, but we can assume that the a-axis (x-axis) is parallel to one of the principal axes, and the 
last principal axis is on the ab-plane and orthogonal to the a-axis, which means that the last 



principal axis can be taken parallel to the y-axis.  Then, we should assume 
  
Uxx =U yy =U1 , 

  Uzz =U3，  
Uxy =Uxz =U yz = 0 .  When we apply the three lattice vectors as 
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we find the reciprocal lattice vectors, 
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and the unit vectors along the direction parallel to the reciprocal lattice vectors
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and then we have the formula for the anisotropic displacement for the atom, 
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, 

which implies the restrictions: U22 =U11 , U12 =U12 / 2  and U13 =U23 = 0 .

Exercise

Assume the lattice constants   a = 6.000Å，   b = 5.000Å，   c = 4.000Å，  α = 120.0 °， β = 110.0 °,

 γ = 100.0 °.  Evaluate all the components of the lattice vectors
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and also the components of the corresponding reciprocal lattice vectors.  Next, calculate the 
interplanar distance of the 123-plane (the lattice plane with h = 1, k = 2 and l = 3)


