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Chapter 4  Scattering of X-ray from a crystal  
Now we are going to treat the diffraction from a crystal.  In Chaps. 4 and 5, it will be shown that 
the diffraction condition will naturally be derived, simply by calculating the structure factor 
(Fourier transform of electron density distribution) of a crystal.  	

     Do NOT assume that “a crystal is periodical arrangement of atoms”, because we can never 
ignore the effect of thermal vibration of atoms, when we measure the diffraction intensity at room 
temperature.  As the atoms in a crystal are thermally vibrating at a finite temperature, the snap shot 
of the atomic position should look like that “atomic positions are randomly deviated from 
periodically arranged average position”.  Strictly speaking, the atoms are not periodically located at 
a realistic crystal.  	

     Furthermore, the typical frequency of the atomic vibration should be in the range of microwave 	


or infrared wave, that is, ���  ��� , then the atoms will appear almost stationary at random 
positions, when you look at the atoms by X-ray with more rapid frequency of ���  ��� .  	

     It is known that the amplitude of the thermal vibration of atoms at room temperature should be 
about 0.1 Å = 0.01 nm.  Since this amount is comparable to the broadness of the electron density 
considered in Chap. 3, it is concluded that “we cannot neglect the effect of thermal vibration”.  	
!
4-1  Thermal vibration 

First, let us examine the amplitude of the thermal vibration of the atoms in a realistic materials at 
room temperature.  	

     The simplest way to treat the thermal vibration of atoms in a solid body is the assumption of 
“harmonic oscillator” having a natural frequency.  The thermal vibration of atoms should be three-
dimensional, but it can be reduced to the combination of one-dimensional vibrations, when the 
motion along three directions are independent of each other.  	

     One-dimensional harmonic oscillator is a fundamental mechanical model.  You should have 
learned the eigen-energy and eigen-states of a hormonic oscillator in lectures about quantum 
mechanics, but in this section, the harmonic oscillator is treated in terms of classical mechanics.  	

     Let the amplitude be ��� , and force constant k, then the energy of vibration will be given by  

���  (Hooke’s law).  The displacement at the time t should be expressed by  ��� , and 

the mean squared value of the displacement ���  is given by	
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and the root of the mean squared value of the displacement is given by	
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The probability that the state of energy E is realized at the temperature T should be given by the 
Maxwell-Boltzman distribution function,	
!
	
 ���  	
         
	
 ( kB : Boltzman constant  ���  ),	
         

and substitution: ���  will give the normal (Gaussian) distribution of the amplitude, 

��� , the broadness of which is given by the standard deviation ��� .  	


     The force constant k should depend on the strength of the interatomic bonds, but we can roughly 
evaluate it from the elastic properties of a solid body.  You will find the values of the volume 

compressibility of most of  solid materials lie in ���  ��� .  As the linear 
compressibility should approximately be 1/3 of the volume compressibility for isotropic materials,  

it should be about ���  ��� .  When we assume the representative value of the linear 
compressibility to be ���  ��� , and the interatomic distance to be 0.2 nm, the force constant 
is estimated at	
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Then the amplitude of the thermal vibration at room temperature (300 K) should be	
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So we may conclude that the amplitude of the thermal vibration is about  0.01 nm = 0.1 Å at room 
temperature.  The amplitude of the thermal vibration is independent of the weight of atom, while 
the frequency should be affected by the weight.  Actually, a simple assumption: “all the atoms are 
vibrating with the amplitude of 0.1 Å” works well in many cases.  	

     The model assuming independent oscillators is called “Einstein model for thermal vibration”.  
In contrast, “Debye model” can treat collective motion of atoms, and can incorporate the 
correlation of the atomic displacement, in principle.  Roughly speaking, the correlation of the 
atomic displacement should be taken into account only at lower temperatures than about 100 K, and 
the Einstein model will not look too much simplified at room temperature.  The traditional way of 
crystal structure analysis assumes the Einstein model about the thermal vibration of the atoms.  	
!!!
4-2   Effects of thermal vibration and scattering from crystals 

As the oscillation of the electric field of the X-ray is much more rapid than the natural thermal 
vibration of the atoms, the atoms will appear stationary when you look at them by X-ray, and the 
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atoms will appear displaced from periodically located average positions, as schematically 
illustrated in Fig. 4.1.  	
!

　  
Fig. 4.1  Schematic illustration of atomic positions at 0 K (left) and room temperature (right).	

The atomic position should look randomly located around the average position.  	
!
     What scattering is expected from such a realistic crystal ?	

     We can still assume that the “average” atomic positions are periodically arranged in a crystal.  
The units of three dimensional periodicity of averaged positions are represented by three vectors,  
��� , ���  and ��� .  When the average position of the j-th atom among M atoms in the unit structure is 

represented by ��� , the average positions of all the atoms in the crystal can be expressed by  

���  ( ��� , ��� , ��� : integer ).  By adding the atomic displacement ���  

caused by thermal vibration, the atomic position of an arbitrary atom will be given by	
!
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 (4.3)	
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The total electron density of the crystal should be the sum of each electron density of an atom 
���  located at the position ���  , that is, 	
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It should be noted that the electron density of a collection of atoms cannot be exactly equal to the 
sum of the electron density of each atom, because the electron density should be modified by 
chemical bonds in a solid body, and what keeps the solid state is nothing but the chemical bonds.  
But the proportion of the change caused by chemical bonds is not large in the total electron density, 
particularly in inorganic materials or metals, where the number of inner-shell electrons is much 
larger than that of the valence electrons.  The modification of the electron density caused by 
chemical bonds is sometimes discussed in terms of difference between the calculated intensities and 
experimental intensities based on a highly precise diffraction measurement, but the start point 
should still be the model based on the sum of the scattering from isolated atoms.  	
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     As the structure factor to express the scattering intensity from whole the crystal is the Fourier 
transform of the total electron density, it should be expressed by	
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Here a simplified expression ���  is used instead of  ��� .  Transformation of the 

equation for the structure factor follows, 	
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Note that the factor: 	
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in Eq. (4.5) is nothing but the atomic scattering factor introduced in Chap. 3.  By utilizing the 
atomic scattering factor for the j-th atom ��� , the structure factor of a crystal should be given by	
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     Next, let us consider the average structure factor, when the statistical distributions of atomic 
positions are known.  Assume that the probability distribution density function of the displacement 
��� of the j-th atom is given by a function ��� , and that all the atoms ( ���  atoms for N unit 

cells) vibrate independently (with no correlation).  Then the average structure factor should be 
given by	
!
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!
which is a ��� -fold multiple integral.  It may look quite complicated, but the assumption of the 
independence of atomic displacements greatly simplifies the formula, because most of the integrals 
will disappear by applying the following relation, 	
!
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In conclusion, we can derive the following formula for the average structure factor, on the 
assumption of independence : 	
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When we define a function:	
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the average structure factor of a crystal is given by	
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The function defined by Eq. (4.11), ��� , represents the “Laue’s condition” to determine the 
condition that diffraction occurs, similarly to the “Bragg’s condition” treated in Chap. 1, and it can 
also represent the effect of finite size of a crystallite, as will be shown in Chap. 6.  The meaning of 
the function ���  will be described in Chaps. 5 & 6 in more detail.  	

     When we define the last integral part in Eq. (4.12) as a function :	

	
 ��� , 	
 (4.13)	
                                                                             

Eq. (4.12) is further simplified as 	
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     The function ���  defined by Eq. (4.13) is called the “atomic displacement factor”.  It was 

previously called “temperature factor” or “Debye-Waller factor”, but the term “atomic 
displacement factor” is currently recommended by the International Union of Crystallography. 
Dynamical displacement by thermal vibration and static displacement by other origins (impurity, 
structural defects, for example) cannot be distinguished by a usual X-ray diffraction measurement.  	

     Now, we have already obtained almost the complete formula for the average structure factor of a 
crystal ���  in Eq. (4.14), where the effect of thermal vibration of atoms are taken into 

account.  But, ...  is it enough to describe the realistic measurement of X-ray diffraction ?  The 
diffraction intensity data obtained by a realistic measurement may correspond to the squared 

absolute value of the structure factor, ��� ,  where ���  is the complex 

conjugate of  ��� .  	
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     Finally, let us examine what is the difference between the averaged value of squared absolute 

value of the structure factor ���  and the squared absolute value of the average structure 

factor ��� .	


     From Eq. (4.7), we obtain	
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and	
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Then the average of the squared absolute value of the crystal structure factor should be 	
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and the value of each integral in Eq. (4.17) should be	
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only when ���  and ���  and ���  and ��� , and	
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Then, we will have	
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and find the following relation, 	


	
 ��� .	
 (4.21)	
                                                      

Therefore, the value of the averaged squared absolute value of structure factor ���  may be 

slightly different from the squared absolute value of the averaged structure factor  ��� .  

However, ���  has a value with the order of ��� -times multiplication of a unit cell structure 

factor, while the deviation has a value with the order of ��� -times multiplication of a unit cell 
structure factor.  So we may neglect the difference between them, unless the crystallite is very 
small.  	
!
4-3  Atomic displacement factor 

The atomic displacement factor introduced in Eq. (4.13) can be defined not only for the harmonic 
oscillator but for any kind of statistical distribution about atomic displacement.  What we should 
assume in the formulation of Eq. (4.13) is independence of the vibration (displacement) of each 
atoms.  	
!
4-3-1  Isotropic atomic displacement factor 

The effects of atomic displacement is simple, when we can assume isotropic thermal vibration and 
three-dimensional Gaussian (normal) distribution of displacement.  Such statistical distribution of 
displacement is just “three-dimensional harmonic oscillator” discussed in Sec. 4-1.  The 
distribution of atomic displacement is given by	
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where ���  is the mean squared displacement of the j-th atom.  We have already solved the Fourier 

transform of this type of distribution in Sec. 3-2-1.  The solution of the atomic displacement factor 
is 	
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When we define	
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the atomic displacement factor can be expressed by	
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Traditionally, the parameter Bj defined by Eq. (4.24) was used for treating the effect of thermal 
vibration, and called “atomic displacement parameter” or “temperature parameter”.  Certainly, 
the use of Bj instead of Uj makes the calculation a little economized, and typical value of Bj around 
“1 Å2” looks more convenient than the value of Uj around “0.01 Å2”.  It is sometimes 
recommended to use Uj as “mean squared atomic displacement parameter” rather than Bj , and 
it is easy to get the value of  Uj from Bj, anyway .  Just divide Bj by ��� .	
!
4-3-2 Anisotropic atomic displacement 

When the vibration (or statistical displacement) of an atom is not isotropic, the mean squared 
displacement is varied on direction, and is specified by a matrix 	
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 (4.26)	
                                                                                                  

 with elements defined by	

	
 ��� , ��� , ��� , 	
         

	
 ��� , ��� , ��� .	
 (4.27)	
                      

The mean squared deviation along an arbitrary direction is given by ��� , where ���  is the 
normalized (unit) vector along the direction.  Since the length of the projection of displacement 

���  onto the direction ���  is given by ��� , the mean squared value is given by	


	
 ��� 	
         !
	
 ��� ��� 	
         

	
 ��� 	
         

	
 ��� 	
 (4.28)	
                                                                                                                               !
     When the eigenvalues or principal values of the matrix are given by U1, U2, U3 and the 
associated eigenvectors or principal axes are given by	


	
 ��� , ��� , ���  ,	
 (4.29)	
                                                                    

8π2 = 78.9568
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the following relation :	
 	
                                                                                                                   

	
 ��� , 	
         

is satisfied, that is, 	
!
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and then	

	
 ��� ,  	
 (4.31)	
                                                                                                                    
and similarly, the relations : 	

	
 ��� 	
 (4.32)	
                                                                                                                       

	
 ��� 	
 (4.33)	
                                                                                                                       
will also be satisfied.  The above three equations Eq. (4.31)-(4.33) are summarized as 	
              

��� .	
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When we define a matrix : 	


	
 ��� ,	
 (4.35)	
                                                                                                     

a relation for the diagonalization : 	


	
 ��� 	
 (4.36)	
                                                                                                

is derived.  	

     Here the matrix ���  is an orthogonal matrix, and the transposed matrix of an orthogonal matrix is 
equal to the inverse matrix ( ��� ).  So another equation :	


	
 ��� 	
 (4.37)	
                                                                                                 

is also satisfied.  	


     When the scattering vector ���  is expressed by ���  in the coordinate system 

where X, Y, Z axes are parallel to the three principal axes, that is, 	

	
 ��� , 	
 (4.38)	
                                                                                                  
linear equations : 	
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are derived.  	


     When the distribution of displacement ���  is given by a function	
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!
the atomic displacement factor will be given by	
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The above equation can be expanded as	
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      Traditionally, anisotropic atomic displacement factors are expressed by six parameters, ��� , 
��� , ��� , ��� , ��� , ��� .  The detail of the traditional expressions will be discussed in Chap. 5.  	

!
4-4  Crystal structure factor 

Here, let us examine the “averaged structure factor” obtained in Eq. (4.14) in Sec. 4-2 again.  When 
we define	


	
 ��� ,	
 (4.44)	
                                                                           

the total structure factor of the crystal is given by	

	
 ��� .  	
 (4.45)	
                                                                                                   

The function ���  corresponds to the amplitude of the scattering from a unit structure, and called 

crystal structure factor or unit-cell structure factor.  The value of ���  is determined by the 
electron density distribution or the arrangement of atoms in a unit cell.  The crystal structure factor 
��� defined by Eq. (4.44) represents the amplitude of the wave scattered by a unit structure, 

varied upon the scattering vector ��� .  Note that the function ���  returns non-zero values for any 

scattering vector ��� , and the diffraction condition that restricts the scattering for special scattering 
vector ���  is included in the function ��� , as will be discussed in Chap. 5.  	

!
4-5  Statistical variation of structure factor	


In this section, the values of structure factor given by Eq. (4.7) in Sec. 4-2 is compared with the 
mean value given by Eq. (4.14), because the structure factor ���  connected with the 
observable diffraction intensity is likely to be given by Eq. (4.7),  and can be statistically varied 
around the mean value ��� .  If the variation should be too large, it may cause statistical 

variation in observed intensities.  	

     From Eq. (4.21), the statistical variance of the structure factor should be given by	
                

��� 	


	
 ���  .  	
         

Similarly to the discussions in Sec. 4-2, the variance should be in the order of multiplication by ���  

of the value ��� .  So the statistical variation of the observed intensity caused by thermal 
vibration can be neglected, unless the crystallite is not very small.  
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